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Fig. 1. We render the derivative w.r.t. horizontal translation of several objects observed through glossy reflections. In an equal-time comparison, we achieve
much lower variance than prior work on edge sampling [Li et al. 2018]. Warped-area sampling (with 16 auxiliary rays) [Bangaru et al. 2020] exhibits bias on
reflections of branches and noise across object areas.
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Physically based differentiable rendering has established itself as key to
inverse rendering, in which scenes are recovered from images through
gradient-based optimization. Taking the derivative of the rendering equa-
tion is made difficult by the presence of discontinuities in the integrand at
object silhouettes. To obtain correct derivatives w.r.t. changing geometry,
accounting e.g. for changing penumbras or silhouettes in glossy reflections,
differentiable renderers must compute an integral over these silhouettes.
Prior work proposed importance sampling of silhouette edges for a given
shading point. The main challenge is to efficiently reject parts of the mesh
without silhouettes during sampling, which has been done using top-down
traversal of a tree. Inaccuracies of this existing rejection procedure result
in many samples with zero contribution. Thus, variance remains high and
subsequent work has focused on alternatives such as area sampling or path
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space differentiable rendering. We propose an improved rejection test. It re-
duces variance substantially, which makes edge sampling in a unidirectional
path tracer competitive again. Our rejection test relies on two approxima-
tions to the triangle planes of a mesh patch: a bounding box in dual space
and dual quadrics. Additionally, we improve the heuristics used for stochas-
tic traversal of the tree. We evaluate our method in a unidirectional path
tracer and achieve drastic improvements over the original edge sampling
and outperform methods based on area sampling.

CCS Concepts: • Computing methodologies → Rendering.

Additional Key Words and Phrases: Differentiable rendering, inverse render-
ing, edge sampling, light transport, importance sampling, data structure
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1 INTRODUCTION
Inverse rendering infers scene information, such as object geometry
or material properties, from images. Early works in this field relied
on simplified physical models and used direct fitting methods to
recover these parameters from measurements [Gardner et al. 2003;
Marschner 1998; Woodham 1992]. Analysis by synthesis is an attrac-
tive alternative to direct fitting methods. It assumes existence of a
differentiable image generation algorithm (forward model) and uses
a variant of gradient descent to iteratively update scene parameters
until the output of the forward model is sufficiently close to the mea-
sured data. Physically based rendering [Pharr et al. 2023] enables
generation of images indistinguishable from real-world photos and
can serve as an excellent forward model. Recently proposed physi-
cally based differentiable rendering methods [Nimier-David et al.
2020; Vicini et al. 2021] compute gradients of images using a Monte
Carlo simulation similar to the one used in forward rendering.
Evaluating gradients with respect to object geometry is crucial

for shape reconstruction. Changes in these parameters cause dis-
continuous changes in visibility that must be handled explicitly by
differentiable renderers. Due to the complexity of this problem and
its importance for geometry reconstruction, it has received consid-
erable attention in the last few years. Li et al. [2018] realized that
the gradients due to changing discontinuities can be computed as
an integral over silhouette and sharp edges of triangle meshes. They
introduced edge sampling as a means to evaluate this integral with
an unbiased Monte Carlo estimate.

Since this edge sampling suffers from high variance, subsequent
work has explored alternatives. The warped area sampling (WAS)
family of methods [Bangaru et al. 2020; Loubet et al. 2019; Xu et al.
2023] casts the boundary integral into an area integral using the di-
vergence theorem. These methods trace auxiliary rays to construct
their gradient estimate. Bangaru et al. [2020] propose a consistent
variant with a fixed number of auxiliary rays and an unbiased variant
with an unbounded number of rays. Path space differentiable render-
ing (PSDR) [Zhang et al. 2020, 2023] computes the boundary integral
by starting construction of light paths on edges. From there, it ex-
tends the paths towards emitters and the sensor in a bidirectional
fashion. With suitable guiding data structures, PSDR outperforms
the existing edge sampling and WAS [Zhang et al. 2023]. However,

it is fundamentally incompatible with unidirectional path tracing,
which is the most popular approach in production rendering.

In our work, we revisit the edge sampling approach in a unidirec-
tional path tracer [Li et al. 2018] and propose a new geometric data
structure that substantially reduces its variance. The integrand in
the boundary integral is non-zero only on silhouettes of objects and
on sharp edges. Finding silhouettes is challenging, as silhouettes
of triangle meshes are sparse, highly irregular, and vary from one
shading point to another. Like Li et al. [2018], we rely on a hier-
archical data structure where each node describes a set of edges
in a mesh patch. A stochastic top-down traversal serves to sam-
ple a silhouette edge for a given shading point. In each step, child
nodes that are known to contain no silhouette edges are rejected.
For the remaining children, we and Li et al. [2018] estimate their
contribution to the boundary integral using linearly transformed
cosines (LTC) [Heitz et al. 2016] and randomly select one child with
a probability proportional to this estimate of importance.

Our main improvement over the existing edge sampling [Li 2019;
Li et al. 2018] is a considerably more accurate method to reject nodes
without silhouette edges. That is important because inaccurate re-
jection results in lots of failed samples with zero contribution that
drive up the variance. Disregarding visibility, an edge appears as
a silhouette for any shading point in the wedge between its two
adjacent triangle planes (Fig. 3 (a)). Hence, each node must store a
compact and conservative description of the set of planes in these
wedges. As a first step, we describe planes by their homogeneous
coordinates (Sec. 3.1) and construct a tight 3D bounding box in this
dual space (Sec. 3.2). To describe smooth geometry more accurately,
the nodes additionally store a pair of quadrics such that each rel-
evant plane is tangent to a quadric in between these two quadrics
(Sec. 3.3). A node gets accepted when the given shading point lies
on a plane that is both inside the dual 3D bounding box and also
tangent to a quadric in this family of quadrics (Sec. 3.4).
In addition to this improved rejection test, we also improve the

LTC-based estimate of the importance of a node (Sec. 3.5). When the
scene contains polygonal area lights, the corresponding penumbras
make significant contributions to gradients. We account for these
explicitly by incorporating knowledge of these light sources into
our importance heuristics (Sec. 3.6). We found that a forest of 4-wide
trees works well as a data structure. To partition the mesh into a
hierarchy of patches, we simply use a BVH build (Sec. 4.1). Then
our algorithms construct the corresponding nodes without relying
on any user-defined parameters (Secs. 4.2, 4.3 and 4.4).

Unlike PSDR, we use unidirectional path tracing, and as opposed
to WAS, we do not need auxiliary rays and are always unbiased.
We compare the performance of our method to existing solutions
(Sec. 5). We show that our approach consistently outperforms both
the original edge sampling [Li et al. 2018] and WAS [Bangaru et al.
2020; Xu et al. 2023]. Compared to a PSDRmethodwith sophisticated
guiding data structures [Zhang et al. 2023], our method has higher
errors at equal sample count. However, we anticipate that this gap
could be closed by augmenting our method with guiding as well.
Overall, we show that edge sampling methods with carefully de-
signed sampling data structures make unidirectional differentiable
renderers a promising alternative to existing methods, contrary to
conclusions based on the original edge sampling.
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An open-source implementation of our method is available at
https://github.com/mariasoroka/QuadricBasedSilhouetteSampling.

2 BACKGROUND AND RELATED WORK

2.1 Inverse Rendering
Inverse problems have received significant attention from the graph-
ics community. With recent developments in inverse rendering it
became possible to reconstruct complex material appearance [Deng
et al. 2022, 2024], or to infer scene geometry [Vicini et al. 2022] or
media properties [Nimier-David et al. 2022] relying solely on images.
Using the analysis-by-synthesis approach as a foundation, these
methods assume a forward image generation model 𝐹 that takes a
vector 𝜽 of scene parameters as input and outputs an image. The
similarity of two images is evaluated using a loss function 𝐿(·, ·). In-
verse rendering algorithms attempt to find scene parameters 𝜽 ∗ that
minimize 𝐿(𝐹 (𝜽 ), 𝐼𝑡 )—the loss for the reference image 𝐼𝑡 and the im-
age rendered by the forward model given scene parameters 𝜽 . The
minimization problem is solved with a gradient-based optimization
method, which requires evaluation of 𝜕𝐿 (𝐹 (𝜽 ),𝐼𝑡 )

𝜕𝜽 .
The properties and limitations of the resulting reconstruction

strongly depend on the underlying forward model. Neural radiance
fields (NeRF) [Mildenhall et al. 2020] and Gaussian splatting (GS)
[Kerbl et al. 2023] methods achieve impressive geometry recovery
and allow re-rendering of a reconstructed scene from different view-
points. However, these methods use a simplified physically inaccu-
rate forward model which is limiting for scenes with highly specular
materials and does not directly support re-rendering with differ-
ent illumination. Differentiable rendering algorithms use physically
based rendering as a forward model and are capable of handling
intricate global illumination effects such as shadows or reflections.
Existing differentiable renderers are general and can be directly
used for problems that previously required dedicated algorithms
[Nicolet et al. 2024; Nimier-David et al. 2019].

2.2 Unidirectional Differentiable Rendering
The rendering equation [Kajiya 1986] relates outgoing radiance 𝐿𝑜
scattered by a shading point p into direction 𝜔𝑜 to emission 𝐿𝑒
and an integral of incoming radiance 𝐿𝑖 multiplied by the cosine-
weighted BSDF 𝑓𝑠 over the hemisphere H2 around the surface nor-
mal:

𝐿𝑜 (𝜔𝑜 , p) = 𝐿𝑒 (𝜔𝑜 , p) +
∫
H2

𝐿𝑖 (𝜔𝑖 , p) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p)d𝜔𝑖 . (1)

We are interested in evaluating the derivative of outgoing radiance
w.r.t. a scene parameter 𝜃 . Our main focus is on parameters control-
ling scene geometry such as object or vertex positions. For simplicity,
we assume that emitted radiance 𝐿𝑒 is independent of 𝜃 .

For a fixed shading point p, the incoming radiance 𝐿𝑖 is discon-
tinuous across silhouette edges w.r.t. p, boundary edges adjacent
to only one triangle, sharp edges with discontinuous normals, or
implicit edges caused by self-intersections in a mesh [Zhang et al.
2019]. Boundary, sharp, and implicit edges present discontinuities
for any shading point and can be computed before the gradient eval-
uation. In contrast, the silhouette edges differ for each p, making it
challenging to handle this type of discontinuity. Moreover, objects
used in inverse rendering are usually represented with watertight

Interior term Boundary term

2
d iLifs =

2
d i(Lifs) +

(p)
dtLi fs J

Fig. 2. Illustration for Equations 2 and 3. The scene features a moving
object (shown in grey). The position of the shape is defined by parameter
𝜃 . Outgoing radiance 𝐿𝑜 at a shading point is an integral of 𝐿𝑖 𝑓𝑠 over the
upper hemisphere H2. A change in 𝜃 causes 𝐿𝑜 to change in two ways.
First, the observed color of the object is dependent on object position and
changes as the shape moves. This is captured by the interior term. Second,
as 𝜃 increases, more directions𝜔𝑖 get occluded by the object. The boundary
term accounts for this change by integrating over shape silhouettes.

meshes with smooth normals and no self-intersections. Thus, we
restrict ourselves to this type of mesh and handle only silhouette
discontinuities. We note that this is merely a technical limitation of
our implementation which can be trivially extended to support other
types of discontinuities using methods proposed by Li et al. [2018].
Fig. 1 features a scene with rough reflections of several objects.

The parameter 𝜃 controls the horizontal translation of the objects.
A change in 𝜃 causes a change in the reflection that we would like
to quantify. If we consider one point p on the reflecting plane and
analyze how object motion changes the outgoing radiance (Fig. 2),
we find that part of the difference is due to the smooth change in
the observed color of the object (interior term, Eq. 2), and the other
part is due to the change in visibility that occurs on the silhouette
(boundary term, Eq. 3):

𝜕

𝜕𝜃
𝐿𝑜 (𝜔𝑜 , p) =

∫
H2

𝜕

𝜕𝜃
(𝐿𝑖 (𝜔𝑖 , p) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p)) d𝜔𝑖 (2)

+
∑︁

𝑒∈S(p)

1∫
0

Δ𝐿𝑖 (𝜔 (𝑡, 𝑒), p) 𝑓𝑠 (𝜔 (𝑡, 𝑒), 𝜔𝑜 , p) 𝐽 (𝑡, 𝑒)d𝑡, (3)

where S(p) denotes the set of silhouette edges of the mesh. If E
is the set of all edges, and n0 (𝑒), n1 (𝑒) are consistently oriented
geometric normals of the two triangles adjacent to an edge 𝑒 ,

S(p) = {𝑒 ∈ E | (n𝑇0 (𝑒)w(0, 𝑒)) (n𝑇1 (𝑒)w(0, 𝑒)) ≤ 0}.
For each edge 𝑒 with endpoints p0 (𝑒) and p1 (𝑒), we define

w(𝑡, 𝑒) = (1 − 𝑡) p0 (𝑒) + 𝑡 p1 (𝑒) − p, 𝜔 (𝑡, 𝑒) = w(𝑡, 𝑒)
∥w(𝑡, 𝑒)∥

v(𝑡, 𝑒) = 𝜕

𝜕𝜃
w(𝑡, 𝑒), 𝐽 (𝑡, 𝑒) = det (w(0, 𝑒),w(1, 𝑒), v(𝑡, 𝑒))

∥w(𝑡, 𝑒)∥3 .

The difference of incoming radiance on two sides of the edge can
be expressed as

Δ𝐿𝑖 (𝜔 (𝑡, 𝑒), p) :=
(
𝐿𝑖 (𝜔 (𝑡, 𝑒), p)−𝐿𝑖 (𝜔 (𝑡, 𝑒),w(𝑡, 𝑒)+p)

)
𝑉p (w(𝑡, 𝑒)),

where 𝑉p (w) is the visibility function that equals 1 when the point
w + p is directly visible from p and zero otherwise. Evaluating this
term requires traversing two light paths: one starting at point p
and intersecting scene geometry at the edge point w(𝑡, 𝑒) + p, and
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another path originating right behind the edge point w(𝑡, 𝑒) + p and
traveling further in direction 𝜔 (𝑡, 𝑒).

The orientation of an edge 𝑒 relative to the velocity v(𝑡, 𝑒) impacts
the contribution of an edge point w(𝑡, 𝑒) to the gradient. If v(𝑡, 𝑒)
is parallel to the plane formed by the edge and the shading point,
edge point w(𝑡, 𝑒) claims a zero change in gradients. This effect is
captured by the Jacobian term 𝐽 (𝑡, 𝑒). Prior work uses different albeit
equivalent formulations of the boundary integral [Li et al. 2018].
For our complete derivation, we refer the reader to the Appendix A.

2.3 Edge Sampling
Li et al. [2018] introduced an edge sampling technique to compute
boundary integrals. Later, Li iterated on it in his thesis [Li 2019]
and published an implementation in the differentiable renderer
redner1. Since our work employs the same approach, we describe
their method in detail.

The idea of the edge sampling method is to approach the problem
of evaluating the boundary integral directly and to compute it using
Monte Carlo integration. Li et al. [2018] suggest using an importance
sampling technique to reduce variance of the Monte Carlo estimator.
They first choose an edge 𝑒 out of all the edges in a scene with
discrete probability Π(𝑒) and then choose a point w(𝑡, 𝑒) + p on
the edge by sampling parameter 𝑡 ∈ [0, 1] with probability density
Π(𝑡, 𝑒). Ideally, Π(𝑒)Π(𝑡, 𝑒) should match the integrand in Eq. 3 up
to a constant factor. This implies that Π(𝑒) should be non-zero only
for silhouette edges and should be proportional to the contribution
of an edge to the boundary integral, and that Π(𝑡, 𝑒) should be
proportional to contributions of points along the edge.

Li et al. [2018] use a binary tree for stochastic edge sampling, sim-
ilar to light bounding volume hierarchies (BVH) [Conty Estevez and
Kulla 2018]. Each leaf holds one edge, and interior nodes correspond
to all edges of a geometry patch and store aggregate information re-
quired for traversal. In the most recent version of the edge sampling
method, Li [2019] uses a 6D BVH where the first three dimensions
bound the spatial extent of the edges, and the last three dimensions
encode information about triangle planes using Hough transforms
[Olson and Zhang 2006]. The v-sphere test is used to reject nodes
without silhouettes (see Appendix F).

When sampling an edge, the data structure is probabilistically
traversed for each shading point. To descend one level down, the
importance of each child node is computed as 𝐼 = 𝐿𝑤 max(𝑓𝑠 )/𝐻 ,
where 𝐿𝑤 is the total length of edges weighted by external dihedral
angle, 𝐻 is the distance to the center of the bounding box and
max(𝑓𝑠 ) is an upper bound on the value of the BSDF in the bounding
box computed using the LTC approximation [Heitz et al. 2016].
Moreover, the silhouette detection test is used to discard irrelevant
children. The next node is chosen stochastically with probabilities
proportional to the computed importances. Once a leaf with a single
edge is reached, a point on the edge is sampled proportional to the
LTC value along this edge [Li et al. 2018; Peters 2021].

We use the latest version of the method implemented in redner as
one of our baselines. We noticed that the v-sphere test implementa-
tion had a bug degrading the performance (Appendix F), which we
fixed for our comparisons. We also want to point out that there is

1https://github.com/BachiLi/redner

a mismatch in the implementation of the importance function and
the formulas stated in the paper. To compute max(𝑓𝑠 ), the authors
find the direction that maximizes the cosine in the transformed do-
main, but in doing so, they ignore the Jacobian term that is crucial
for LTCs to provide good fits to BRDFs. Since there is no way to
correctly estimate the maximum of an LTC over a polygon with the
same computational cost as the existing incorrect implementation,
we keep this function unchanged for our comparisons.

It is important to note that the rejection test is designed to be
conservative to ensure unbiasedness of the importance sampling
but can safely give false positive results, i.e. the test is allowed to
wrongly claim that there is a silhouette in a node. Tests producing
more false positive results are less efficient, as they produce more
zero-contribution samples. In our work, we suggest a completely
new rejection test that is significantly more accurate, and come up
with an improved importance function that better matches the edge
contribution to the boundary integral.

2.4 Warped Area Sampling
Warped-area sampling (WAS) methods avoid explicit sampling of
silhouettes by turning boundary integrals into area integrals. Lou-
bet et al. [2019] proposed an approximate mapping based on local
reparametrizations that keep the discontinuities fixed in the inte-
gration domain. Later, Bangaru et al. [2020] used the divergence
theorem to derive an exact mapping and came up with an unbi-
ased and a consistent gradient estimator. Both estimators require
computing a warp field ®V for every sampled ray direction. The
field ®V does not have an analytical closed-form expression and
can only be evaluated numerically. To this end, multiple auxiliary
rays are sampled from a von Mises–Fisher (vMF) distribution. The
concentration of the vMF distribution is a user-controlled parame-
ter that should be chosen based on scene geometry and can affect
performance if not chosen well. If the number of auxiliary rays 𝑁
is fixed, the estimator is biased but consistent, i.e. the bias vanishes
as 𝑁 → ∞. The authors also propose a debiasing technique that
chooses 𝑁 at random for each ray. Xu et al. [2023] improved WAS
by introducing a new distance function and extended it to support
bidirectional path tracing. Vicini et al. [2022] and Bangaru et al.
[2022] extended the WAS to support shapes represented with signed
distance functions.

2.5 Path Space Differentiable Rendering
A path space formulation permits a different way of generating
boundary paths. Instead of finding silhouette edges for a given
shading point, PSDR starts path construction on an edge and then
completes it to reach a camera and an emitter. Choosing the edge
segment requires sampling a point on an edge and a segment direc-
tion. To reduce the variance of the final estimator, all existing PSDR
methods use a precomputed guiding distribution that is stored either
in a dense grid [Zhang et al. 2020] or in an adaptive data structure
[Yan et al. 2022; Zhang et al. 2023]. Independently of the representa-
tion, the guiding distribution captures howmuch each edge segment
contributes to the boundary gradient. Sampling proportionally to
the stored function helps to account for the variability of the scene
illumination (Δ𝐿𝑖 ) and of the material properties of the objects (𝑓𝑠 ).
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To construct the guiding distribution, all PSDR methods require
sampling many trial paths as a precomputation step.

2.6 Related Data Structures
The problem of edge sampling is similar to light sampling with many
lights. Conty Estevez and Kulla [2018] stochastically traverse a BVH
that spatially bounds light sources and approximates emission pro-
files using spherical caps. Moreau et al. [2019] demonstrate how to
perform this traversal on the GPU. In non-photorealistic rendering,
there is also a need to identify silhouette edges. Tsiapkolis and Bé-
nard [2024] use nodes with rejection based on bounding spheres
and spherical caps around normals. The nodes are built bottom-up,
but the data structure is a flat list of nodes for disjoint mesh patches.

3 NODE TRAVERSAL PROBABILITY
In this section, we discuss what information is stored in inner nodes
of our hierarchy and how it is used during traversal. First, we cover
underlying concepts from projective geometry (Sec. 3.1) and de-
scribe how to compactly approximate a set of edges in a mesh patch
(Secs. 3.2, 3.3). Then, we proceed to the discussion of our rejection
test (Sec. 3.4) and importance function (Secs. 3.5, 3.6). Sec. 4 explains
the node construction algorithm.

3.1 Silhouette Properties
We first study a single edge 𝑒 adjacent to two triangle planes q0 (𝑒)
and q1 (𝑒) (Fig. 3 (a.2)). This edge is a silhouette for a shading point
p if one of the planes is front-facing and the other is back-facing
w.r.t. p or, in other words, when the shading point lies in the wedge
W(𝑒) formed by q0 (𝑒) and q1 (𝑒).
The position of a point relative to a plane or a wedge can be

compactly expressed using projective geometry. The homogeneous
coordinates of the shading point p are x = [p, 1]𝑇 ∈ R4. The ho-
mogeneous coordinates of a plane are q = [n, 𝑛𝑜 ]𝑇 ∈ R4, where n
is the normal direction of the plane, and 𝑛𝑜 is the offset along the
normal. A positive, negative or zero value of the dot product q𝑇 x
indicates that the plane is front-facing, back-facing or incident to
the point p, respectively (Fig. 3 (a.1)).
Note that both points and planes are described by 4D vectors.

Thus, a plane has a dual interpretation as a point and vice versa. This
duality is a central concept in projective geometry [Richter-Gebert
2011, Sec. 3.5]. To distinguish between the two interpretations, for
the original interpretation, we say that x is a primal point and q is a
primal plane, and for the other interpretation, we say that x is a dual
plane and q is a dual point. In Fig. 3, 4, and 5, we visualize planes
as dual points. Since 4D vectors cannot be clearly pictured, we use
lower-dimensional examples to illustrate our ideas. In Fig. 3 (a.1) and
(a.4), for example, a line (or a primal hyperplane in 2D) q is plotted
as a dual 3D point in the dual space. When interpreting illustrations
with dual objects, it is important to keep in mind that distances
between dual points (primal planes) are not defined in the same
way as distances between primal points (Sec. 4.3 and Appendix E).

The wedge W(𝑒) consists of all planes between the triangle
planes q0 (𝑒) and q1 (𝑒). Given that the normals of the planes are
chosen consistently, the set of planes in the wedge can be charac-
terized using homogeneous coordinates as W(𝑒) = {𝛼q0 (𝑒) + (1 −

𝛼)q1 (𝑒) |𝛼 ∈ [0, 1]}, i.e. the wedge is a line segment connecting the
homogeneous coordinates of the two bounding planes (Fig. 3 (a.5)).
Now, we can conclude that p is in the wedgeW(𝑒) and that 𝑒 is a
silhouette edge for p if and only if there is a q ∈ W(𝑒) s.t. q𝑇 x = 0.
For a mesh patch with multiple edges, there is a silhouette edge
for p if it belongs to one of the wedges (Fig. 3 (a.3)). Explicitly con-
structing the union of points in the wedges and checking whether
p belongs to this set is a complex problem requiring computing
halfspace intersections for a large number of planes. Thus, we take
an alternative route and describe the wedges as a set of planes
W = {W(𝑒) | 𝑒 ∈ E} ⊂ R4. Now, to check that p belongs to one of
the wedges, it is sufficient to check whether p is incident to one of
the planes inW, i.e. to verify that there is a q ∈ W s.t. x𝑇 q = 0. The
setW is easy to compute since it is a set of line segments in dual
space (Fig. 3 (a.6)). Explicitly computing the dot products for all line
segments inW is infeasible for large meshes. Thus, we approximate
the setW with a bounding set W∗ ⊃ W that allows us to easily
validate that x𝑇 q ≠ 0, ∀q ∈ W∗.

3.2 Bounding Box Approximation
The simplest way to approximate the setW is to bound it with a
4D axis aligned bounding box. This approach, however, does not
take into account that homogeneous coordinates of planes are scale
invariant, i.e. that scaling a dual point q by a nonnegative constant
does not change the plane it describes. Thus, this approach may
result in a poor approximation of W if the scaling was not chosen
well. In Fig. 3 (b), we provide an example of such a failure case in
a lower-dimensional setting. Changing the scale 𝜈 of a plane q0
changes the bounding box and as a result the set of planes covered
by it. We visualize this set with a contour plot on the hemisphere
for each value of 𝜈 . It is clear that for small values of 𝜈 , the covered
set is significantly larger than necessary.
To avoid the problem with scaling, we choose a unit vector Z

s.t. Z𝑇 q > 0 ∀q ∈ W, and compute a new set of planes W′ by
scaling every plane q ∈ W by 1/(Z𝑇 q). Since for any q′ ∈ W′

it holds that Z𝑇 q′ = 1, W′ lies on a dual plane. Fig 3 (c) provides
an illustration of the setsW andW′. We compute an orthogonal
basis 𝐴 = [𝑡1, 𝑡2, 𝑡3,Z] ∈ R4×4 and a 3D axis aligned bounding
box B𝑞 covering {[𝑡𝑇1 q

′, 𝑡𝑇2 q
′, 𝑡𝑇3 q

′]𝑇 ∈ R3 | q′ ∈ W′}. The set
A(B𝑞) = {𝐴[r, 1]𝑇 | r ∈ B𝑞} covers all the wedges in the mesh
patch and serves as an approximation of this set. The bounding box
B𝑞 is stored alongside 𝐴 in every inner node.
Sec. 4.4 describes how we choose Z. In short, it is the point or

direction farthest from all planes inW. This choice avoids unrea-
sonably small values of Z𝑇 q, which would result in large bounding
boxes. When the described vector Z does not exist, it is guaranteed
(Appendix B) that for any shading point, the mesh patch has a sil-
houette edge. This implies that the patch can never be skipped. Our
method is able to identify such nodes during construction of the
data structure.

3.3 Quadrics Approximation
The bounding box approximation is still crude. As illustrated in
Fig. 3 (d), it can significantly enlarge the original set of planes. Many
meshes used in practice have smooth geometry, and we utilize
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(a) Planes, edges and wedges (b) Naive approximation
of a set of planes

(c) Scale-invariant bounding
box approximation of W

(d) Quadrics approximation
of W

Fig. 3. (a) Using homogeneous coordinates, a plane q can be visualized as a dual point (1 and 4); a wedge W(𝑒 ) corresponding to an edge 𝑒 formed by two
planes q0 and q1 can be visualized as a line segment (2 and 5); finally, a set of wedges in a mesh patch can be visualized as a set of line segments (3 and 6).
(b) A naive way to approximate the set of wedges is to use a bounding box. Due to scale invariance, multiplying only q0 by 𝜈 does not change the set of planes.
However, it changes the bounding box. The color gradient on the unit hemisphere shows the set of planes covered by the bounding box for each 𝜈 . For small 𝜈 ,
the bounding box covers larger sets of planes and, thus, it is a worse approximation. (c) For a set of wedges W (brown line segments), set W′ (black line
segments) is constructed by scaling every q ∈ W by 1/(𝑍𝑇 q) . Vectors 𝑡1, 𝑡2 and 𝑍 form an orthogonal basis in R3. B𝑞 is a bounding box aligned with 𝑡1 and
𝑡2 covering planes in W′ . (d) View of the set W′ and bounding box B𝑞 from “above.” The curves𝑄0 and𝑄1 illustrate two bounding quadrics defining the set
F(𝑄0,𝑄1 ) . The set W∗ is the intersection of B𝑞 and F(𝑄0,𝑄1 ) .

this property by approximating the set of planes with a smooth
surface. In our case, we use quadrics. A quadric is defined by a 4 × 4
matrix𝑄 and consists of all 4D vectors satisfying 𝜌𝑇𝑄𝜌 = 0. When 𝜌
represents a primal point, we call𝑄 a primal quadric. Some examples
of primal quadrics are ellipsoids, hyperboloids and paraboloids.
When 𝜌 represents a dual point (a plane), we refer to 𝑄 as a dual
quadric. Note that𝑄−1 is also 4× 4 matrix that can be interpreted as
a primal or a dual quadric. The primal quadric𝑄−1 is fundamentally
related to the dual quadric 𝑄 : if a plane q satisfies q𝑇𝑄q = 0, then q
is tangent to the quadric 𝑄−1 in primal space. Essentially, the set of
planes that are tangent to the primal quadric 𝑄−1 is described as
planes incident to the dual quadric 𝑄 .
Our goal is to bound the set of wedges W and we use dual

quadrics to accomplish that. For a general set of planes, one dual
quadric cannot be enough to cover the set entirely. Thus, we use a
family of dual quadrics. Given two bounding quadrics 𝑄0 and 𝑄1,
we define

F (𝑄0, 𝑄1) = {q ∈ R4 |∃𝜇 ∈ [0, 1] s.t. q𝑇 (𝜇𝑄0 + (1 − 𝜇)𝑄1)q = 0}.
In essence, this set contains all tangent planes of quadrics (𝑄0𝜇 +
𝑄1 (1 − 𝜇))−1 as 𝜇 ∈ [0, 1] varies. The bounding quadrics are cho-
sen in a way that F (𝑄0, 𝑄1) covers the entire set W. Our final
approximation ofW is

W∗ = F (𝑄0, 𝑄1) ∩ A(B𝑞).
To compute node importance during traversal (Sec. 3.5), we addi-

tionally store a primal bounding box B𝑝 covering all the vertices in
the mesh patch, and the sum of edge lengths weighted by external
dihedral angle 𝐿𝑤 .

3.4 Rejection Method
Our rejection test takes a node and a point x in homogeneous co-
ordinates as input. Our goal is to check whether there is a plane
q ∈ W∗ for which q𝑇 x = 0. If there is one, there may be a silhouette
in the subtree and the node cannot be rejected. We start by finding

q

(r, 1)(ATx) = 0

(a)

Q0

Q1

(b)

Q0 Q1

(c)

Q0
Q1

(d)

Q0

Q1

(e)

Fig. 4. Given a query point x, the first step of the rejection test is to find the
polygon C (possibly degenerate) lying in the intersection of the bounding
box B𝑞 and a plane with homogeneous coordinates 𝐴𝑇 x (a). The second
step is intersecting the polygon C with the set of planes F(𝑄0,𝑄1 ) which
requires intersecting F(𝑄0,𝑄1 ) with polygon vertices (b), polygon edges
(c), and polygon interior (d), or confirming that no intersection exists (e).

all planes q in the dual bounding box A(B𝑞) for which q𝑇 x = 0.
Based on the definition of A(B𝑞), that is equivalent to finding all
vectors r ∈ B𝑞 such that [r, 1] (𝐴𝑇 x) = 0. That is the same as in-
tersecting the dual 3D bounding box B𝑞 with a dual plane defined
by the 4D vector 𝐴𝑇 x. The set of 3D points in this intersection is
either empty or it is a (possibly degenerate) 2D polygon (Figure 4
(a)). If the intersection is empty, we can guarantee that q𝑇 x ≠ 0 for
all q ∈ A(B𝑞) and there is no silhouette in the node. Otherwise, we
explicitly compute the set of verticesV of the 2D polygon. The cor-
responding set of planes is a dual 2D polygon with vertices defined
as 𝐴[v, 1]𝑇 ∈ R4 where v ∈ V . We denote this dual polygon as C.
The next step is to check whether C intersects the set of planes

F (𝑄0, 𝑄1). This is equivalent to finding a plane q ∈ C such that it
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also belongs to F (𝑄0, 𝑄1) or, in other words, for which

∃𝜇 (q) ∈ [0, 1] s.t. q𝑇 (𝜇 (q)𝑄0 + (1 − 𝜇 (q))𝑄1) q = 0 ⇔

𝜇 (q) = q𝑇𝑄1q
q𝑇 (𝑄1 −𝑄0)q

∈ [0, 1]

or proving that no such plane exists. Our choice of bounding quadrics
guarantees that the function 𝜇 (q) is continuous on the polygon C
(see Sec. 4.4). If there is a dual point q ∈ C for which 𝜇 (q) ∈ [0, 1],
one of the following three mutually exclusive conditions holds:
Cond. (1) There is a polygon vertex q𝑣 s.t. 𝜇 (q𝑣) ∈ [0, 1] (Fig. 4 (b)).
Cond. (2) Cond. (1) does not hold, but 𝜇 (q) ∈ [0, 1] on an edge of

the polygon (Fig. 4 (c)).
Cond. (3) Neither Cond. (1) nor Cond. (2) holds, but 𝜇 (q) ∈ [0, 1]

in the interior of C (Fig. 4 (d)).
If none of the three conditions holds true (Fig. 4 (e)), polygon C
does not intersect F (𝑄0, 𝑄1) and thus, the node does not contain a
silhouette. Checking Cond. (1) is trivial—it is sufficient to evaluate
𝜇 at each vertex of the polygon.
For Cond. (2), we notice that if 𝜇 (q𝑣) ∉ [0, 1] for all vertices but

there is a dual point q𝑒 on an edge s.t. 𝜇 (q𝑒 ) ∈ [0, 1], it implies that
there must be a dual point on an edge s.t. 𝜇 (q) ∈ {0, 1} ⇔ q𝑇𝑄0q =

0 or q𝑇𝑄1q = 0. So, checking Cond. (2) boils down to verifying that
one of the bounding quadrics intersects an edge of the polygon.
Since any dual point q on an edge with endpoints q0 and q1 can
be expressed as q = 𝜆q0 + (1 − 𝜆)q1, finding the intersection of the
edge with a quadric 𝑄 is equivalent to solving a quadratic equation
for 𝜆 ∈ [0, 1]:

q𝑇𝑄q = (𝜆q0 + (1 − 𝜆)q1)𝑇𝑄 (𝜆q0 + (1 − 𝜆)q1) = 0.

For Cond. (3), we use a similar reasoning as for Cond. (2). If 𝜇 (q) ∉
[0, 1] for all dual points on the boundary of the polygon, but there
is q𝑖 inside of it s.t. 𝜇 (q𝑖 ) ∈ [0, 1], there must be a dual point inside
of the polygon that belongs to one of the bounding quadrics. Thus,
to check Cond. (3), it is necessary to intersect bounding quadrics
with the polygon. This test can be efficiently performed using the
algorithm provided in Appendix C.

3.5 Node Importance
To construct a good estimate of the boundary integral (Eq. 3), it is
necessary to use importance sampling and to choose nodes based
on their contribution to the integral. Importantly, this contribution
varies from one shading point to another. Thus, the sampling proba-
bility should be dependent on the shading point as well. The perfect
node importance function is proportional to the overall contribu-
tion of edges in the node, which is impossible to compute without
explicitly integrating over all of them. Instead, we use a few ap-
proximations of the boundary integral that allow us to evaluate
importance based on the information stored in inner nodes.
First, we assume that Δ𝐿𝑖 is constant along all edges in the

scene. We deviate from this assumption only when explicitly ac-
counting for polygonal lights (Sec. 3.6). Second, because the ve-
locities are not known in advance during the backward gradient
computation, we assume them to be constant, i.e. ∥v(𝑡, 𝑒)∥ = 1.
We would like our node importance to be conservative, and re-
place det (w(0, 𝑒),w(1, 𝑒), v(𝑡, 𝑒)) with its maximal possible value

∥w(0, 𝑒) × w(1, 𝑒)∥. These two simplifications leave us with the
following expression for the node importance:

𝐼∗ (𝜔𝑜 , p) =
∑︁

𝑒∈S(p)

1∫
0

𝑓𝑠 (𝜔 (𝑡, 𝑒), 𝜔𝑜 , p)
∥w(0, 𝑒) ×w(1, 𝑒)∥

∥w(𝑡, 𝑒)∥3 d𝑡 . (4)

To simplify the expression even further, we approximate 𝑓𝑠 with an
average BSDF value in the solid angle Ω(B𝑝 ) of the spatial bounding
box of the mesh patch B𝑝 :

𝐼∗ (𝜔𝑜 , p) ≈ 𝑓𝑠 (Ω(B𝑝 ))
∑︁

𝑒∈S(p)

1∫
0

∥w(0, 𝑒) ×w(1, 𝑒)∥
∥w(𝑡, 𝑒)∥3 d𝑡,

where the average of the BSDF in the solid angle of the bounding
box is given by

𝑓𝑠 (Ω(B𝑝 )) =

∫
Ω (B𝑝 ) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p)d𝜔𝑖∫

Ω (B𝑝 ) 1d𝜔𝑖
.

To estimate 𝑓𝑠 (Ω(B𝑝 )), we employ LTCs [Heitz et al. 2016]. For
the second term, we use a far-field approximation, i.e. we assume
that for any edge 𝑒 , its length 𝐿(𝑒) is small compared to the distance
to its vertices 𝐻 (𝑒) = ∥w(0, 𝑒)∥. Additionally, we ignore the orien-
tation of the edge and assume that (w(1, 𝑒) − w(0, 𝑒)) ⊥ w(0, 𝑒).
These simplifications lead to the following approximation:

∑︁
𝑒∈S(p)

1∫
0

∥w(0, 𝑒) ×w(1, 𝑒)∥
∥w(𝑡, 𝑒)∥3 d𝑡 ≈

∑︁
𝑒∈S(p)

𝐿(𝑒)
𝐻 (𝑒)2 .

We approximate 𝐻 (𝑒) for all edges in the node as the distance 𝐻
from the shading point to the center of the bounding box B𝑝 . For∑
𝑒∈S(p) 𝐿(𝑒), we use the length of all edges weighted by external

dihedral angle 𝐿𝑤 , which we precompute during tree build. Our
final expression for the node importance is:

𝐼 (𝜔𝑜 , p) =
𝐿𝑤

𝐻2 𝑓𝑠 (Ω(B𝑝 )).

The proposed importance function is different from the one used
by Li et al. [2018] in two ways. First, we use the average of the BSDF
in the solid angle of the bounding box instead of itsmaximum. Unlike
the maximum value, the average can be correctly and efficiently
evaluated using the LTC approximation (see Sec. 2.3). Secondly,
our derivations indicate that the importance function should be
inversely proportional to 𝐻2 instead of 𝐻 as suggested by Li et
al. [2018].

3.6 Handling Polygonal Lights
The node importance discussed in the previous section works well
for low-frequency environment lights, but can be improved to ex-
plicitly take into account polygonal lights in the scene.

Instead of assuming thatΔ𝐿𝑖 is constant along every edge, we take
advantage of the fact that the radiance of a Lambertian polygonal
light is known in advance and incorporate this knowledge into our
importance function. Instead of computing the BSDF integral over
the entire bounding box B𝑝 , we clip the solid angle Ω(B𝑝 ) against
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the solid angle subtended by the polygonal light Ω(L) and use

𝐼light (𝜔𝑜 , p) =
𝐿𝑤

𝐻2

∫
Ω (B𝑝 )∩Ω (L) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p)𝑑𝜔𝑖∫

Ω (B𝑝 ) 1𝑑𝜔𝑖
.

We then weight 𝐼light and 𝐼 by the average polygonal light and en-
vironment light intensities, respectively, and use it as the final node
importance function. This modification greatly improves sampling
quality in presence of polygonal lights (Sec. 5.3). This approach can
be extended to scenes with multiple polygonal lights by summing
the importances computed for each light source. For scenes with a
large number of light sources, more sophisticated techniques are
required.

4 BUILDING THE HIERARCHY
In this section, we cover all aspects of hierarchy construction. In
Sec. 4.1, we discuss how to assign mesh patches to hierarchy nodes.
Sec. 4.2-4.4 explain how to compute the bounding quadrics 𝑄0 and
𝑄1 and how to choose the vector 𝑍 used for the bounding box
approximation in Sec. 3.2.

4.1 Tree Structure
Our rejection test and importance function are more accurate for
smaller mesh patches. Thus, using a wide tree is beneficial as it en-
ables faster descent to smaller patches, allowing for high-quality re-
jections early in the traversal. However, very wide trees can become
computationally expensive as each traversal step requires many re-
jection tests. We use 4-wide trees: they have the same traversal cost
as binary trees (descending one level is twice as expensive, but the
tree is half as deep) and are easy to build. We construct a separate
tree for each user-defined object. To avoid poor traversal decisions
at the top of the hierarchy, we discard the root node, leaving us
with four subtrees per object. The resulting data structure is a forest
with 4𝑁 trees where 𝑁 is the number of objects. At every step of
the traversal—including the initial choice among the 4𝑁 trees—we
sample the next node proportionally to the rejection test and the
importance function.
To build the tree for an object, we start by eliminating all edges

with dihedral angles greater than 𝜋 since, for a watertight mesh
with opaque BSDF, they never lie on a silhouette [Sander et al.
2001]. Next, we compute bounding boxes for the edges. We build
the hierarchy in a top-down fashion. To create four child nodes from
a parent node, we perform three splits: first, we split the parent node
into two intermediate mesh patches, and then we split each of the
intermediate patches oncemore to produce the four final child nodes.
On each splitting step, we choose 10 equally spaced candidate split
locations (also called buckets [Pharr et al. 2023]) along the largest
axis of the parent bounding box, and choose the one that minimizes
the surface area heuristic (SAH). The SAH is robust and performs
well in the context of our problem. However, it was designed for the
completely different task of building optimal data structures for ray
tracing, and future work can potentially improve the quality of the
hierarchy and computed gradients by developing a cost function
tailored specifically to the problem of silhouette sampling.

4.2 Finding BoundingQuadrics
Once a node has been assigned a mesh patch with edges E, triangle
planes P, and union of wedgesW, we construct a family of quadrics
F (𝑄0, 𝑄1). Quadric 𝑄 𝑓 is fitted to the set of planes P (Sec. 4.3) and
an offset quadric 𝑄𝑜 (Sec. 4.4) is used to form 𝑄0 and 𝑄1 as 𝑄𝑖 =

𝑄 𝑓 + 𝜆𝑖𝑄𝑜 for 𝑖 = 0, 1. The offset coefficients 𝜆0 and 𝜆1 are chosen
in such a way that F (𝑄0, 𝑄1) is the smallest set that contains W.
We illustrate this idea in Fig. 5, whereW is shown as a set of line
segments. The background color shows which quadric 𝑄 𝑓 + 𝜆𝑄𝑜

each point belongs to, and highlighted quadrics correspond to the
parameters that ensure the tightest bounds.

= 3

= -3

Q1

Q0

Qf = 3

= -3

Q1

Q0

Qf

Fig. 5. 2D visualization of the union of wedges W, fitted quadric𝑄 𝑓 and
bounding quadrics𝑄0 and𝑄1. On the left and right images, the bounding
quadrics are computed using two different offsets𝑄𝑜 . The color gradient
shows the value of the function 𝜆 (q) = −(q𝑇𝑄 𝑓 q) / (q𝑇𝑄𝑜q) . The left
offset quadric gives a tighter fit.

In the following, we describe how to compute the optimal offset
coefficients 𝜆0 and 𝜆1. First, we notice that

F (𝑄0, 𝑄1) = {q ∈ R4 | ∃𝜆 ∈ [𝜆0, 𝜆1] s.t. q𝑇 (𝑄 𝑓 + 𝜆𝑄𝑜 )q = 0}.
To reflect the dependency of the set F on the offset parameters, we
use the notation F (𝜆0, 𝜆1) = F (𝑄0, 𝑄1).

A plane q belongs to the set F (𝜆0, 𝜆1) if and only if

∃𝜆(q) ∈ [𝜆0, 𝜆1] s.t. q𝑇 (𝑄 𝑓 + 𝜆(q)𝑄𝑜 )q = 0 ⇔

𝜆(q) = −
q𝑇𝑄 𝑓 q

q𝑇𝑄𝑜q
∈ [𝜆0, 𝜆1] .

For a single wedge𝑤 corresponding to an edge 𝑒 , choosing 𝜆0 (𝑒) =
minq∈𝑤 𝜆(q) and 𝜆1 (𝑒) = maxq∈𝑤 𝜆(q) guarantees that every plane
in thewedge belongs toF (𝜆0 (𝑒), 𝜆1 (𝑒)) and ensures optimal bounds.
Note that for max and min to exist it is necessary that q𝑇𝑄𝑜q ≠

0 ∀q ∈ 𝑤 . The choice of 𝑄𝑜 in Sec. 4.4 accounts for that. We now
seek an efficient way to compute these minima and maxima.

For a wedge𝑤 formed by two planes q0 (𝑒) and q1 (𝑒), any plane
in 𝑤 can be expressed as q(𝑡) = (1 − 𝑡)q0 (𝑒) + 𝑡q1 (𝑒) for some
𝑡 ∈ [0, 1]. Since 𝜆(q(𝑡)) is a differentiable function of 𝑡 ∈ [0, 1],
its extrema are attained at 𝑡 = 0, at 𝑡 = 1 or at a critical point in
between. Values of the function 𝜆(q(𝑡)) at 𝑡 = 0 and 𝑡 = 1 are simply
𝜆(q0 (𝑒)) and 𝜆(q1 (𝑒)), respectively. Analytical expressions for the
interior extremal points of 𝜆(q(𝑡)) can be derived for a general
offset quadric, but the resulting equations are complex. Thus, we
restrict ourselves to the special case of rank-1 symmetric positive
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semi-definite offset quadrics. We provide the full derivation of the
expression for the interior extremal value of 𝜆(q(𝑡)) in Appendix D
and only present the final result here.
To compute extrema of 𝜆(q), we define

𝜆∗ (𝑒) =
𝑞00
𝑓
(𝑒)𝑞11

𝑓
(𝑒) − (𝑞01

𝑓
(𝑒))2

2𝑞01
𝑓
(𝑒)𝑞01

𝑜 (𝑒) − 𝑞00
𝑓
(𝑒)𝑞11

𝑜 (𝑒) − 𝑞11
𝑓
(𝑒)𝑞00

𝑜 (𝑒)
, where

𝑞
𝑖 𝑗

𝑓
(𝑒) = q𝑇𝑖 (𝑒)𝑄 𝑓 q𝑗 (𝑒) and 𝑞

𝑖 𝑗
𝑜 (𝑒) = q𝑇𝑖 (𝑒)𝑄𝑜q𝑗 (𝑒),

and construct the set Λ(𝑒) as

Λ(𝑒) = Λ̃(𝑒) ∪ Λ∗ (𝑒), where
Λ̃(𝑒) =

{
𝜆(q0 (𝑒)), 𝜆(q1 (𝑒))

}
,

Λ∗ (𝑒) =
{
𝜆∗ (𝑒) if

(
q0 (𝑒)𝑇𝑄𝜆∗ (𝑒 )q1 (𝑒)

) (
Δq(𝑒)𝑇𝑄𝜆∗ (𝑒 )Δq(𝑒)

)
< 0,

∅ otherwise.

Here we use Δq(𝑒) = q0 (𝑒) − q1 (𝑒) and 𝑄𝜆∗ (𝑒 ) = 𝑄 𝑓 + 𝜆∗ (𝑒)𝑄𝑜 .
The set Λ̃(𝑒) corresponds to the values of 𝜆(q) at the planes

q0 (𝑒) and q1 (𝑒), and the set Λ∗ (𝑒) contains the internal extremal
value of the function if such an extremum exists. Now we can
state that minq∈𝑤 𝜆(q) = minΛ(𝑒) and maxq∈𝑤 𝜆(q) = maxΛ(𝑒).
Computing max and min of Λ(𝑒) is easy since Λ(𝑒) contains at most
three values.
To extend this result from a single wedge 𝑤 to the union of

wedges W, we define Λ = ∪𝑒∈EΛ(𝑒) and compute 𝜆0 = minΛ and
𝜆1 = maxΛ. If the offset quadric 𝑄𝑜 is a rank-1 symmetric positive
semi-definite matrix s.t. q𝑇𝑄𝑜q > 0 ∀q ∈ W, such a choice of
bounds is optimal and results in an unbiased rejection test.

4.3 Fitting aQuadric
Our goal is to find a quadric𝑄 𝑓 that best fits the set of triangle planes
P ⊂ R4. We base our fitting method on the work of Taubin [1991]
that addresses a similar problem of fitting an implicit curve to a set
of points. As a fitting error, the author uses an approximation of
Euclidean distance from a point to a curve.
Since we are working with planes instead of points, we should

choose our metric to reflect this difference. The distance between
planes is well-defined only for parallel planes. In other cases, we say
that the distance is infinite. Given two planes q0 and q1 with aligned
unit length normals, the distance𝑑 (q0, q1) between them is the abso-
lute value of the difference in plane offsets. Using𝐴 = diag(0, 0, 0, 1),
this can be expressed as 𝑑2 (q0, q1) = (q0 − q1)𝑇𝐴(q0 − q1). In Ap-
pendix E, we show that using our definition of distance between
planes and following the derivations proposed by Taubin [1991], we
can approximate distance from a plane q to a quadric 𝑄 as

𝑑2 (𝑄, q) = 9
4
(q𝑇𝑄q)2

q𝑇𝑄𝐴𝑄q
.

Similarly to the original method, we define the fitting error 𝑒 (𝑄)
to be proportional to the sum of squared distances from points in P
to a quadric 𝑄 and approximate it with 𝐸 (𝑄) as follows:

𝑒 (𝑄) :=
4
9

∑︁
q∈P

𝑑2 (𝑄, q) =
∑︁
q∈P

(q𝑇𝑄q)2

q𝑇𝑄𝐴𝑄q
≈

∑
q∈P (q𝑇𝑄q)2∑
q∈P q𝑇𝑄𝐴𝑄q

= 𝐸 (𝑄) .

It is possible to find a quadric 𝑄 minimizing the error 𝐸 (𝑄) using a
direct method. For that, a symmetric 4×4 matrix𝑄 is represented as
a vector of ten coefficients v ∈ R10 where the first four components
of v correspond to diagonal entries of𝑄 , the next three components
of v are entries on the 1-diagonal of𝑄 , etc. This allows us to express
q𝑇𝑄q as v𝑇 𝑠 (q) for a suitable 10D vector 𝑠 (q). Incorporating this
into the numerator of 𝐸 (𝑄) leads us to the following definition of a
matrix𝑀 ∈ R10×10:∑︁

q∈P
(q𝑇𝑄q)2 = v𝑇 ©«

∑︁
q∈P

𝑠 (q)𝑠 (q)𝑇 ª®¬ v = v𝑇𝑀v.

Similarly, we can define a matrix 𝑁 s.t.
∑
q∈P q𝑇𝑄𝐴𝑄q = v𝑇𝑁v.

With this notation at hand, minimizing 𝐸 (𝑄) is equivalent to

finding v ∈ R10 minimizing
v𝑇𝑀v
v𝑇𝑁v

. (5)

The solution vector v is a generalized eigenvector for 𝑀𝑥 =

𝜇𝑁𝑥 corresponding to the minimal generalized eigenvalue 𝜇. In our
implementation, we solve the generalized eigenvalue problem by
explicitly computing matrices𝑀 and 𝑁 and applying a few steps of
inverse iteration followed by Rayleigh quotient iterations [Golub
and Van Loan 1996].

4.4 Choosing the Offset Direction
While any symmetric positive semidefinite matrix 𝑄𝑜 for which
q𝑇𝑄𝑜q > 0 ∀q ∈ W can serve as an offset quadric, some matrices
produce a better approximation of W and, as a consequence, result
in more reliable rejection of nodes. We illustrate that in Fig. 5, where
we compute F (𝑄0, 𝑄1) using two different offset quadrics. While
on the left the family of quadrics does not deviate much from the
setW, on the right F (𝑄0, 𝑄1) covers a lot of irrelevant planes. This
example highlights how much the choice of the offset impacts the
quality of the approximation W∗.
We use rank-one matrices for ease of representation and define

𝑄𝑜 = DD𝑇 for some vector D ∈ R4. Such a matrix is already sym-
metric positive semidefinite. To ensure that q𝑇𝑄𝑜q > 0 ∀q ∈ W, it
is sufficient to choose D s.t. D𝑇 q > 0 ∀q ∈ P. Thus, we are look-
ing for a vector D that satisfies this condition and ensures a good
approximation ofW.

There are different ways to define which D is the best choice. In
the following, we present a definition that we found to work well
in practice. We start by rewriting

q𝑇𝑄𝜆q = q𝑇 (𝑄 𝑓 + 𝜆DD𝑇 )q = q𝑇𝑄 𝑓 q + 𝜆(D𝑇 q)2 .

Given that q is a plane, D𝑇 q can be interpreted as a signed distance
from pointD to the plane q. If we treatD as a point, its last coordinate
should be equal to 1. Using i = [0, 0, 0, 1]𝑇 this constraint can be
expressed with the linear equation D𝑇 i = 1.

To achieve a good approximation ofW, the quadrics 𝑄𝜆 should
move fast through all the planes in P as the parameter 𝜆 changes,
i.e. 𝜕

𝜕𝜆

(
q𝑇𝑄𝜆q

)
= (D𝑇 q)2 should be large for all planes. Formally,

taking into account that D𝑇 q > 0 ∀q ∈ P, that can be expressed as
findingDwhichmaximizesminD𝑇 q across all q ∈ P. Geometrically,
it means that we are looking for a point that has the largest minimal
distance to all the planes in P (Fig. 6 (a)).
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Fig. 6. In (a) and (b), the hatched region illustrates the interior of a mesh.
Planes in P are visualized as black line segments. The value of 𝜌—distance
from a point to the closest plane in P—is shown with a color gradient. (a)
For the bounded function 𝜌 , there is a point D that maximizes 𝜌 . (b) For the
unbounded case, there is a unit direction d in which 𝜌 grows the fastest.
The set of vectors N = {n0, . . . , n4} consists of unit normals for planes in
P. (c) The set N lies on the unit sphere centered at the origin (dashed line).
If r is the center of the smallest bounding sphere (shown in brown) for the
set N, the vector d can be computed as d = r/∥r∥ .

This optimization problem is equivalent to a linear programming
(LP) problem:

Find 𝜌 ∈ R, D ∈ R4s.t.

D𝑇 i = 1 and D𝑇 q > 𝜌, ∀q ∈ P
maximizing 𝜌 .

(6)

We use the CLP simplex solver [Forrest et al. 2024]—a part of the
COIN-OR [Lougee-Heimer 2003] project—to solve problem (6). If
it has a finite solution 𝜌 , the optimal vector D is used to construct
the offset quadric. If the problem is infeasible, it implies that for any
shading point, there is a backfacing and frontfacing plane and the
node always has a silhouette (see Appendix B). Finally, if the farthest
point is infinitely far away or, in other words, if the linear program-
ming problem is unbounded, we find a unit direction vector d with
the smallest angle to all the plane normal vectors (Fig. 6 (b)) and
use it to form vector D = [d, 0]𝑇 . Formally, we solve the following
optimization problem:

Find d ∈ R3 s.t.

d𝑇 d = 1 and d𝑇 n > 0, ∀n ∈ N

maximizing min
n∈N

d𝑇 n,

(7)

where N refers to the set of all unit normals of planes in P. Since
all the plane normals have unit length, problem (7) can be solved by
finding the smallest bounding sphere ofN and using the direction to
the sphere center as d (Fig. 6 (c)). We prove this claim in Appendix G.
We solve problem (7) approximately using a variant of the ex-

tremal points optimal sphere method proposed by Larsson [2008].
We precompute 16 directions uniformly distributed on a hemisphere
and project points from the set N onto these directions. The set of
extremal points consists of at most 32 points and contains points
with the largest and the smallest projections for each of the di-
rections. We compute the optimal bounding sphere for the set of
extremal points using Welzl’s algorithm with move-to-front heuris-
tics [Gärtner 1999; Welzl 1991]. The resulting sphere may not cover
the entire set of points N . To obtain a proper bounding sphere, we
iterate over all the points in N and if we encounter a point that

is not covered by the current sphere 𝑠 , compute a new sphere that
covers both 𝑠 and the problematic point. If c is the center of the final
sphere, D can be computed as [c/∥c∥, 0]𝑇 .
In practice, for the majority of nodes, the LP problem (6) is un-

bounded. Thus, to minimize the computational cost of computing
D, we start from solving problem (7). If it turns out that it does
not have a feasible point, we attempt to solve problem (6). If it is
infeasible as well, we conclude that the node contains a silhouette
for any shading point and should never be rejected. The computed
vector D is used to construct the offset quadric 𝑄𝑜 .

We also useD as vector Z during the construction of the bounding
box B𝑞 (Sec. 3.2). Such a choice of Z ensures minimal distortion of
the set W′ compared to the setW.

5 RESULTS
We start discussion of our results by evaluating the quality of our
rejection test as compared to the rejection method proposed by
Li [2019] (Sec. 5.1). Next we compare the quality of gradients com-
puted using our algorithm with edge sampling [Li 2019], warped-
area sampling [Bangaru et al. 2020; Xu et al. 2023] and projective
sampling [Zhang et al. 2023] (Sec. 5.2).
We discuss advantages of explicitly accounting for polygonal

lights during the hierarchy traversal in Sec. 5.3, and study the effect
of culling concave edges in Sec. 5.4. Sec. 5.5 covers inverse rendering
examples, and Sec. 5.6 discusses limitations of our technique.

5.1 Rejection Test Quality
The variance of the boundary integral estimator depends on how
closely the importance sampling density matches the integrand. In
particular, it depends on how reliably the rejection test identifies
nodes that do not contain silhouette edges. We call cases where the
rejection test falsely claims that a node contains a silhouette false
accepts.

Fig. 7 visualizes the accuracy of our rejection test for a single node.
We use a spherical patch as an example of simple geometry and
a toroidal patch to analyze a more complex scenario. Our method
outperforms the approach proposed by Li [2019] in both cases. Addi-
tionally, Fig. 7 illustrates the importance of the quadrics approxima-
tion for our rejection test. We observe a significant improvement in
rejection quality for the mesh patch with more complex geometry,
where the bounding box approximation lacks expressiveness.

For the second experiment, we analyze rejection test quality for
an entire hierarchy of mesh patches viewed from a single shading
point. We traverse the data structure for the chosen point p and
find all the edges that have non-zero probability of being sampled.
Ideally, these should be only silhouette edges located in the upper
hemisphere for the shading point p. In practice, due to imperfections
in the rejection test and data structure construction, edges with zero
contribution to the boundary integral can be sampled as well. This
negatively impacts the variance of the computed gradients. In Fig. 8,
we highlight all the edges with non-zero sampling probability. Our
hierarchy traversal samples fewer edges with zero contribution
compared to the approach proposed by Li [2019].
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Li [2019] method Our method

Li [2019] method
Correctly rejected 
(without bug fix)
Correctly rejected 
(with bug fix)
Falsely accepted
Correctly accepted

Our method
Correctly rejected 
(bounding box test)
Correctly rejected 
(quadrics test)
Falsely accepted
Correctly accepted

Fig. 7. Evaluation of rejection test quality. For each of the two mesh
patches shown on the left, we choose two parallel planes that slice the scene
at different heights. For each point on these planes, we perform either our or
Li’s [2019] rejection test and color the point according to its output. The first
two rows show results for the mesh patch at the top. For Li’s [2019] method,
we additionally show the impact of the bug in redner (see Appendix F) on
the rejection test quality.

5.2 Comparison with Prior Work
We implement our method in redner—the codebase used in the pa-
pers by Li et al. [2018] and Bangaru et al. [2020]. All aspects of path
construction except for the silhouette sampling are unchanged: To
compute the gradient, a path is sampled using BSDF importance
sampling. Per bounce, reflected radiance is estimated using multiple
importance sampling (MIS) between BSDF sampling and light sam-
pling, and then stored in a buffer. Computation of the interior term
reuses the already constructed path and the precomputed radiance
and evaluates the gradient in a similar way as the radiance—using
BSDF and light sampling combined with MIS. For the boundary
term, silhouette points are sampled at each bounce. In case the sam-
pling was successful, complete boundary paths are generated to
evaluate the boundary term. In all of our experiments, we limit the
maximal path length to three.

For our comparisons, we use a scene with an object placed in front
of a reflecting surface with GGX microfacet BRDF and roughness
𝛼 = 0.01. The scene is illuminated with an environment light. The
camera observes the object reflectionwhile the object itself is outside
the view frustum. The parameter 𝜃 controls the vertical translation
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Fig. 8. A scene that consists of an object located in front of a flat surface,
visualized as wireframe meshes. For a shading point (in black), we analyze
the quality of our rejection test as compared with the method proposed by
Li [2019]. All the edges that according to a rejection test may be silhouettes
and have non-zero probability of being sampled are plotted in green.
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Fig. 9. Equal time comparison of our method with Li [2019]. Each row shows
a primal rendering of an object observed through a rough mirror as well as
gradient images computed with respect to vertical translation of the object.

of the object. We compute gradients with respect to 𝜃 and compare
them with finite differences evaluated with 216 samples per pixel.

All experiments are performed on an Intel Xeon Gold 6348 CPU
with 16 threads. Throughout this section, we use 128 spp for all
results produced by our method.
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Fig. 10. An equal-time comparison of WAS methods [Bangaru et al. 2020; Xu et al. 2023] with our quadric-based silhouette sampling method. In the primal
renderings, the camera observes a reflection of a moving object in a rough mirror. We compute gradients w.r.t. vertical translation of the object using our
method, WAS (old) and WAS (new). For WAS methods, we compare gradients evaluated with 8 and 32 auxiliary rays.

Edge Sampling [Li 2019; Li et al. 2018]. Fig. 9 features an equal time
comparison of our method to the original implementation of edge
sampling [Li 2019]. Data structure construction times and sample
counts are reported in the supplemental material. Although our
hierarchy construction takes significantly longer, this time is only
a fraction of the total gradient computation time. Our experiment
shows that using our rejection test and the improved importance
function leads to dramatically less noisy gradients at lower sample
counts.

Warped-Area Sampling. WAS methods compute the boundary
integral by casting it into an area integral. That requires sampling
multiple auxiliary rays for each shading point and evaluating a dis-
tance function dependent on scene-specific hyperparameters. When
the number of auxiliary rays is fixed and not chosen at random,
WAS methods produce biased gradients [Bangaru et al. 2020].

Our comparison includes the original WAS [Bangaru et al. 2020]
and its modification that uses a different distance function [Xu
et al. 2023], referred to as WAS (old) and WAS (new), respectively.
Both methods are implemented in redner allowing us to make fair
equal-time comparisons to our method. We set the concentration
parameter 𝜅 = 105 for WAS (old) and 𝑎 = 3 and 𝜎0 = 0.005 for WAS
(new). We use a corrected version of WAS (new) (see the errata of
Xu et al. [2023]). Our comparisons are shown in Fig. 10.

Our method offers decisively higher-quality gradients in equal
time (see Fig. 10). Unlike WAS with a fixed number of auxiliary rays,
our method is unbiased. And, unlike the unbiased version of WAS,
it has predictable execution time and can be parallelized more easily.
Additionally, due to our direct approach to computing the boundary
integral, there is no additional noise introduced to the interior term
of the gradient and there is no need for hyperparameter tuning.

PSDR methods. Path space differentiable rendering methods com-
pute the boundary integral explicitly by sampling silhouette paths.
Unlike edge sampling methods that start path construction from
the camera, PSDR methods first choose a silhouette segment and
then complete it to form a valid light path. To ensure low variance
of the gradient estimator, these methods require precomputation of
a guiding distribution over all silhouette segments.
In the following, we discuss our approach as compared to the

state-of-the-art projective sampling method [Zhang et al. 2023]
with octree guiding implemented in Mitsuba 3 [Jakob et al. 2022].
Due to the performance differences between redner and Mitsuba 3,
equal-time comparisons are not informative and we opt for equal-
sample-budget comparisons instead.

Both methods use samples for two purposes: finding silhouettes,
and constructing light paths to compute the silhouette contribution
to the gradient. In our method, the number of samples used in
these two operations is controlled by only one parameter 𝑁 . For
an image with 𝑛𝑝 pixels, we performs 𝑁𝑛𝑝 hierarchy traversals
to find a silhouette and trace 2𝑁𝑛𝑝 light paths (two light paths
are needed to evaluate Δ𝐿𝑖 ) to evaluate edge contributions to the
final gradient. The behavior of the projective sampling method, on
the other hand, is defined by three parameters: 𝑁proj, 𝑁trial and
𝑁sppi. First, projective sampling performs 𝑁proj𝑛𝑝 projections to
find silhouette segments. Then, it builds the octree and for each leaf
it traverses 2𝑁trial paths to compute the probability density for the
guiding distribution. Finally, it samples the octree 𝑁sppi𝑛𝑝 times
and traces 2𝑁sppi𝑛𝑝 light paths to evaluate the gradient induced
by indirectly observed discontinuities. In total, if the octree has 𝑛𝑙
leaves, projective sampling traverses 2𝑁sppi𝑛𝑝 +2𝑁trial𝑛𝑙 light paths
and samples a silhouette edge 𝑁proj𝑛𝑝 times.
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Fig. 11. An equal-sample-budget comparison of our method and the projective sampling approach [Zhang et al. 2023]. Each primal rendering features a
reflection of an object in a rough mirror. Our method uses 128 samples per pixel for gradient computation. We set up the projective sampling method so that it
traverses the same number of light paths and makes the same number of attempts to find a silhouette point as our method. Since there are multiple sets of
parameters that fulfill this condition, we try a few different setups and report the result that produces minimal MSE. See Sec. 5.2 for more details. The red
colormap is used to visualize the squared image error.

To make our comparison fair, we choose parameters so that each
method gets the same number of attempts to find silhouette seg-
ments and an equal number of light paths to traverse. We set 𝑁proj =
𝑁 = 128 and experiment with 15 different values of 𝑁sppi ∈ (0, 128).
The value of 𝑁trial is set to satisfy 2𝑁𝑛𝑝 = 2𝑁sppi𝑛𝑝 + 2𝑁trial𝑛𝑙 . We
select the 𝑁sppi producing gradients with minimal MSE and report
results in Fig. 11. In this experiment, projective sampling outper-
forms our method. This result is expected, given that projective
sampling utilizes a guiding distribution, while our method relies
solely on local sampling decisions. We believe that adding guiding
to our method would result in significantly improved gradients.
In Table 1, we report the data structure build time and the total

gradient computation time for both methods. Our implementation
runs 6 to 8.5 times slower. Although this difference is significant,
we believe that it can be largely attributed to differences of the two
codebases such as the usage of AVX instructions in Mitsuba 3.

Our method relies solely on unidirectional path tracing and sam-
ples a silhouette for any given shading point. It is a self-contained
technique that can be used as is. However, it can also be incorpo-
rated into the projective sampling framework [Zhang et al. 2023]. In
projective sampling, silhouette segments are constructed by tracing
𝑁proj𝑛𝑝 paths and applying a projection operation to them. This
step could instead use our explicit edge sampling, which has the
advantage that the probability of each sampled edge is known.

5.3 Scenes with Polygonal Lights
Sec. 3.6 describes a way to explicitly account for polygonal light
sources in a scene. In Fig. 12, we evaluate performance of the mod-
ified importance function on a test scene that features an object
illuminated with a small polygonal light source and a dim environ-
ment light. The object casts a soft shadow onto a diffuse plane placed

Table 1. Data structure build time and overall execution time for our method
and the projective sampling approach in the equal-sample-budget scenario.
These timings were measured on the hardware described in Sec. 5.2.

Ours Proj. Sampl.
Build time Overall time Build time Overall time

Bob 0.24 s 141.70 s 11.10 s 23.57 s
Cube 1.91 s 149.61 s 16.94 s 31.95 s

Fertility 1.50 s 153.13 s 10.20 s 18.08 s
Ibis 1.32 s 151.66 s 10.83 s 20.17 s

in front of it and the camera observes this shadow. We use 𝐼 (𝜔𝑜 , p)
and 𝐼light (𝜔𝑜 , p) as importance functions for hierarchy traversal. At
equal sample count (we use 64 spp), using 𝐼light (𝜔𝑜 , p) results in
a 50× MSE reduction for the Harp scene and a 20× improvement
for the Elephant scene.

5.4 Concave Edge Culling
For a watertight mesh with opaque BSDF, the concave edges never
form a silhouette and can be culled (Sec. 4.1). The culling consider-
ably reduces the number of edges in the hierarchy (see Table 2).

We perform an ablation study to evaluate the effect of the culling
on the gradient quality (see Fig. 13). The equal-sample comparison
shows that culling improves gradient quality. However, the extent
of this improvement depends on the mesh.

5.5 Optimization Results
This section shows an application of our technique to an inverse
rendering task where the goal is to infer the shape of an object from
a single reference image. The scene has two mirrors (with rough-
ness 𝛼 = 0.01) positioned in such a way that the key geometric
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Fig. 12. An equal-sample comparison of gradients computed using either our
importance function 𝐼 (𝜔𝑜 , p) , which is oblivious to lighting, or 𝐼light (𝜔𝑜 , p) ,
which explicitly accounts for polygonal lights. The primal image shows the
shadow of an object illuminated by a small polygonal light source. Gradients
in the second and third column are evaluated using 64 samples per pixel.
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Fig. 13. Ablation study for concave edge culling. The scene features an
object visible only through reflection in a smooth plane. Gradients of the
image w.r.t. vertical translation of the object are evaluated using 16 samples
per pixel. The second and third row show derivative images computed
without and with concave edge culling, respectively. We show squared
errors using a red colormap.

details of the object are visible only in reflections (see Fig. 14). Our
optimization minimizes 𝐿2 loss using simple gradient descent. To
enforce mesh smoothness, we employ the mesh reparametrization
proposed by Nicolet et al. [2021]. During optimization, we remesh
the object multiple times to introduce additional vertices and to
reconstruct finer details. Fig. 14 shows the object evolution through-
out the optimization. We plot renderings of the original scene (top)
and renderings of the same mesh in a different scene setup (bottom).
Using a physically-based inverse rendering approach and cor-

rectly computing the boundary term allows us to successfully re-
construct the object geometry even though most of the geometric
details are visible only indirectly. Our data structure handles the
meshes generated by intermediate optimization steps well.

Table 2. Number of edges in the hierarchy with and without concave edge
culling for various meshes used in the paper.

Bob Spot Hand Cube Bunny Birds
No culling 13118 8716 23296 71008 11509 92894
With culling 8963 6186 15755 45028 7618 53471

5.6 Limitations
As we demonstrated in our experiments, the proposed method is
able to compute gradients for objects of various geometries un-
der different illumination conditions. However, the quality of the
gradients is dependent on the complexity of the mesh and the il-
lumination. Fig. 15 shows an example of a geometrically intricate
Chandelier scene. We compute derivatives with respect to object
translation using the same sample count as used in Figs. 9, 10, and 11.
Nonetheless, variance of the gradients is orders of magnitude worse
than for meshes with less complex geometry. Scenes with strong
directional illumination present a challenge for our method as well
since our importance function assumes constant Δ𝐿𝑖 (Sec. 3.5).
While these are currently failure cases for our technique, we believe
that this can be addressed in future work.

Furthermore, our current implementation has two technical lim-
itations. First, our implementation does not support meshes with
sharp or single-sided edges or meshes with self-intersections (Sec.
2.2). Second, our implementation of 𝐼light currently supports scenes
with only one light source. It is trivial to extend it to support mul-
tiple polygonal lights, but to handle large light counts efficiently,
additional data structures may be needed.

6 CONCLUSION
In this paper, we propose a new edge sampling method for unbiased
computation of the boundary integral in differentiable rendering.
In terms of performance, traversal of the proposed data structure
is an embarrassingly parallel computation, and the data structure
construction can be parallelized using already existing strategies
developed for the standard ray-tracing BVHs. Thus, we believe that
our implementation can be extended to efficiently run on GPUs.

The problem of discontinuous integrands has received a lot of at-
tention in the last few years. Yet, the most straightforward approach
to handling boundary integrals—edge sampling—has remained un-
derexplored. In this paper, we prove that edge sampling is not only a
viable approach but is competitive with the leading existingmethods.
The simplicity of ourmethod and its reliance solely on unidirectional
path tracing make it easy to incorporate into existing renderers.
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Fig. 14. Geometry reconstruction results.We reconstruct the shape of an object given a single reference image of the object and its two reflections (top
right). The top row shows shape evolution in the original scene setup. The bottom row shows the object under different illumination conditions.
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Fig. 15. Challenging scene. The Chandelier scene features an object with
very complex geometry. Gradients are computed with 128 samples per pixel.
Despite using as many samples as in Fig. 9, 10, and 11, our gradient image
has significantly higher variance than in the previous experiments.
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A DERIVATION OF THE BOUNDARY TERM
Our goal is to evaluate the derivative of the outgoing radiance 𝐿𝑜
with respect to a scene parameter 𝜃 , i.e. to compute

𝜕

𝜕𝜃
𝐿𝑜 (𝜔𝑜 , p) =

𝜕

𝜕𝜃

∫
H2

𝐿𝑖 (𝜔𝑖 , p) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p)d𝜔𝑖 . (8)

For readability we use 𝐹 (𝜔𝑖 ) = 𝐿𝑖 (𝜔𝑖 , p) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p).
For each visible triangle 𝑇𝑖 in a scene, we define a spherical

polygon 𝑃𝑖 which is a projection of the visible part of 𝑇𝑖 onto the
hemisphere H2. We use 𝑃∗ to refer to the part of the hemisphere
that is not covered by any triangle, i.e. we use 𝑃∗ = H2\(∪𝑃𝑖 ).
The set P = {𝑃∗, 𝑃0, 𝑃1, ...} covers the entire hemisphere H2 with
disjoint spherical polygons. This allows us to rewrite Eq. 8 as∫

H2
𝐹 (𝜔𝑖 )d𝜔𝑖 =

∑︁
𝑃∈P

∫
𝑃

𝐹 (𝜔𝑖 )d𝜔𝑖 .

Now, since every 𝑃 is a regular surface and since function 𝐹 is
sufficiently smooth on each 𝑃 , we can use the generalization of
Reynolds transport theorem to surface domains [Petryk and Mróz
1986] and write that

𝜕

𝜕𝜃

∫
𝑃

𝐹 (𝜔𝑖 )d𝜔𝑖 =
∫
𝑃

𝜕

𝜕𝜃
𝐹 (𝜔𝑖 )d𝜔𝑖−

2
∫
𝑃

𝐹 (𝜔𝑖 )𝑉𝑛𝐾𝑚d𝜔𝑖 +
∮
𝜕𝑃

𝐹𝑉𝜇d𝑙,
(9)

where we use 𝜕𝑃 to refer to the boundary line of 𝑃 and𝐾𝑚 to denote
mean curvature of the surface. V stands for the velocity of 𝜕𝑃 with
respect to change in parameter 𝜃 . 𝑉𝑛 denotes the component of V
normal to the surface 𝑃 , and 𝑉𝜇 = V𝑇 𝜇, where 𝜇 is the direction
tangential to 𝑃 and normal to 𝜕𝑃 . In Eq. 9, d𝑙 is the arc length of the
curve.
Since spherical polygons move only along the hemispherical

surface, 𝑉𝑛 = 0 and Eq. 9 simplifies to
𝜕

𝜕𝜃

∫
𝑃

𝐹 (𝜔𝑖 )d𝜔𝑖 =
∫
𝑃

𝜕

𝜕𝜃
𝐹 (𝜔𝑖 )d𝜔𝑖 +

∮
𝜕𝑃

𝐹𝑉𝜇d𝑙 .

Summing these equations for all the spherical polygons brings
us to the expression

𝜕

𝜕𝜃

∫
H2

𝐹 (𝜔𝑖 )d𝜔𝑖 =
∫
H2

𝜕

𝜕𝜃
𝐹 (𝜔𝑖 )d𝜔𝑖 +

∑︁
𝑃∈P

∮
𝜕𝑃

𝐹𝑉𝜇d𝑙 . (10)

The first term in Eq. 10 is the interior term (Eq. 2). In the following,
we prove that the second term equals the boundary term (Eq. 3).

We use 𝜕H2 to refer to the boundary of the hemisphereH2. Every
visible edge 𝑒 , when projected to the hemisphere, forms an arc
𝐴(𝑒). We assume that all the arcs are consistently oriented, i.e. that
det (n,m0 (𝐴(𝑒)),m1 (𝐴(𝑒))) > 0, where m0 (𝐴(𝑒)) and m1 (𝐴(𝑒))
are the two endpoints of the arc. The set A = ∪𝐴(𝑒) is the union of
projections of all visible edges.
Each boundary 𝜕𝑃 consists of multiple arc segments which ei-

ther belong to 𝜕H2 or they are one of the arcs in A. Since P
covers the whole hemisphere, every arc in A appears in the sum∑
𝑃∈P

∮
𝜕𝑃
𝑓 𝑉𝜇d𝑙 twice but with different signs. With this in mind

the sum can be computed as∑︁
𝑃∈P

∮
𝜕𝑃

𝐹𝑉𝜇d𝑙 =
∮
𝜕H2

𝐹𝑉𝜇d𝑙 +
∑︁
𝐴∈A

∫
𝐴

(𝐹+𝑉 +
𝜇 − 𝐹−𝑉 −

𝜇 )d𝑙,
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where 𝐹+𝑉 +
𝜇 and 𝐹−𝑉 −

𝜇 are values of 𝐹 and 𝑉𝜇 to two sides of the
boundary. In our case, 𝑉 +

𝜇 = 𝑉 −
𝜇 . Moreover, because of the cosine

foreshortening term, 𝐹 = 0 on 𝜕H2, and the sum can be further
simplified: ∑︁

𝑃∈P

∮
𝜕𝑃

𝐹𝑉𝜇d𝑙 =
∑︁
𝐴∈A

∫
𝐴

Δ𝐹𝑉𝜇d𝑙 .

Here we used 𝑉𝜇 := 𝑉 +
𝜇 = 𝑉 −

𝜇 and Δ𝐹 := 𝐹+ − 𝐹− .
Next, we notice that Δ𝐹 is non-zero only when the function

𝐹 (𝜔𝑖 ) = 𝐿𝑖 (𝜔𝑖 , p) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p) is discontinuous across the arc. Since
the BRDF 𝑓𝑠 is a continuous function, it implies that incoming radi-
ance 𝐿𝑖 should be discontinuous across the arc and, as a consequence,
across the corresponding edge. This happens either for silhouette
edges, where 𝐿𝑖 is discontinuous because of the visibility term, or
for sharp edges, where normals are discontinuous. Since we assume
that our meshes do not have sharp edges, we conclude that∑︁

𝑃∈P

∮
𝜕𝑃

𝐹𝑉𝜇d𝑙 =
∑︁

𝐴∈SA

∫
𝐴

Δ𝐹𝑉𝜇d𝑙 =

∑︁
𝐴∈SA

∫
𝐴

Δ𝐿𝑖 (𝜔𝑖 , p) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p)𝑉𝜇d𝑙,
(11)

where we use SA to refer to the silhouette arcs of the mesh.
The final step is computing 𝑉𝜇 . Let arc 𝐴 be a projection of a

silhouette edge 𝑒 with endpoints w0 and w1. For other points on
the edge, we use w𝑡 = w0 + 𝑡 (w1 −w0). Velocity of the point w𝑡

with respect to parameter 𝜃 is denoted as v𝑡 = 𝜕𝜃w𝑡 . The projection
of w𝑡 onto the hemisphere can be computed as

m𝑡 =
w𝑡

∥w𝑡 ∥
=

w0 + 𝑡 (w1 −w0)
∥w0 + 𝑡 (w1 −w0)∥

.

To compute the velocity V of m𝑡 , we differentiate the expression
above with respect to 𝜃 :

V =
𝜕

𝜕𝜃
m𝑡 =

v𝑡
∥w𝑡 ∥

−
w𝑡 (v𝑇𝑡 w𝑡 )
∥w𝑡 ∥3 .

The next step is deriving an expression for 𝜇. We start from com-
puting 𝜕𝑡m𝑡 :

𝜕𝑡m𝑡 =
w1 −w0
∥w𝑡 ∥

−
w𝑡 (w𝑇

𝑡 (w1 −w0))
∥w𝑡 ∥3

and define 𝜇 as

𝜇 = m𝑡 ×
𝜕𝑡m𝑡

∥𝜕𝑡m𝑡 ∥
=

m𝑡 × (w1 −w0)
∥w𝑡 ∥∥𝜕𝑡m𝑡 ∥

− 0.

Now we can project V onto 𝜇:

𝑉𝜇 = V𝑇 𝜇 =
v𝑇𝑡 𝜇
∥w𝑡 ∥

− 0 =
v𝑇𝑡 (m𝑡 × (w1 −w0))

∥w𝑡 ∥2∥𝜕𝑡m𝑡 ∥
=

=
v𝑇𝑡 (w𝑡 × (w1 −w0))

∥w𝑡 ∥3∥𝜕𝑡m𝑡 ∥
=

v𝑇𝑡 (w0 ×w1)
∥w𝑡 ∥3∥𝜕𝑡m𝑡 ∥

.

Finally, substituting the expression for𝑉𝜇 into Eq. 11 and replacing
d𝑙 with ∥𝜕𝑡m𝑡 ∥d𝑡 , we obtain∫

𝐴

𝐹𝑉𝜇d𝑙 =
∫ 1

0
Δ𝐿𝑖 (𝜔𝑖 , p) 𝑓𝑠 (𝜔𝑖 , 𝜔𝑜 , p)

det (v𝑡 ,w0,w1)
∥w𝑡 ∥3 d𝑡 . (12)

Summing up expressions from Eq. 12 for each silhouette arc, we
obtain the boundary term from Eq. 3.

B UNREJECTABLE MESH PATCHES
During the hierarchy construction, for eachmesh patchwith triangle
planes P, we attempt to compute a vector Z such that Z𝑇 q > 0
∀q ∈ P (Sec. 4.4). If no such vector is found, the node is marked
accordingly and never rejected during hierarchy traversal.
If the mesh patch is connected, this choice is optimal as there

is always a silhouette edge. Indeed, for any shading point p with
homogeneous coordinates Z = [p, 1]𝑇 , there must be two planes
q0 and q1 such that (Z𝑇 q0) (Z𝑇 q1) ≤ 0. Since the mesh patch is
connected, there must be two planes q0 (𝑒) and q1 (𝑒) adjacent to
the same edge 𝑒 s.t. (Z𝑇 q0 (𝑒)) (Z𝑇 q1 (𝑒)) ≤ 0, implying that 𝑒 is a
silhouette edge for p.

C POLYGON-QUADRIC INTERSECTION
Cond. (3) of the rejection test (see Sec. 3.4) requires us to establish
whether the quadric𝑄 intersects interior of the polygon C given that
𝑄 does not intersect the boundary of the polygon. In this section,
we explain how to efficiently check for the intersection.

First, we notice that every point of the polygon C can be repre-
sented as q(𝛼1, 𝛼2) = 𝛼1q1 + 𝛼2q2 + q3 ∈ R4, where q3 = Z, and
q1, q2 are two linearly independent vectors orthogonal to Z. Each
vertex 𝑣𝑖 of the polygon C can now be represented with a vector of
coefficients 𝑣∗

𝑖
= [𝑣∗

𝑖,1, 𝑣
∗
𝑖,2, 1]

𝑇 s.t. 𝑣𝑖 = 𝑣∗𝑖,1q1 + 𝑣∗𝑖,2q2 + q3. We use
C∗ to refer to the polygon with vertices 𝑣∗

𝑖
.

A point q(𝛼1, 𝛼2) lies on the quadric 𝑄 when 𝛼1, 𝛼2 satisfy

[𝛼1, 𝛼2, 1]𝐶𝑄 [𝛼1, 𝛼2, 1]𝑇 = 0,

where 𝐶𝑄 [𝑖, 𝑗] = q𝑇
𝑖
𝑄q𝑗 ; or in other words, when point a with

homogeneous coordinates [𝛼1, 𝛼2, 1]𝑇 lies on the conic with matrix
𝐶𝑄 . Now, the problem of intersecting polygon C with quadric 𝑄 is
reduced to the problem of intersecting conic 𝐶𝑄 with polygon C∗.
Since 𝑄 does not intersect the boundary of the polygon C, the

conic 𝐶𝑄 does not intersect the boundary of C∗. A curve that in-
tersects interior of a polygon but not its boundary must have a
bounded component entirely contained within the polygon. Ellipses
are the only conics that have a bounded component. Since an ellipse
has only one component overall, it means that for a conic to inter-
sect the interior of the polygon without intersecting the boundary,
the conic must lie entirely within the polygon. Thus, to check for
intersection of C∗ and 𝐶𝑄 , it is sufficient to find some point lying
on 𝐶𝑄 and verify that it is in the interior of C∗.
To find a point on the conic 𝐶𝑄 we choose a line with homoge-

neous coordinates l ∈ R3 and a point r lying on it, i.e. r𝑇 l = 0. We
intersect 𝐶 with l and with l′ = 𝐶𝑄 r. If an intersection with either
one of the lines is found, we use it as an example of a point on the
conic. In the following, we prove that if the conic has real points, at
least one intersection must exist. For that, assume that neither l nor
l′ intersect the conic 𝐶𝑄 .

First, we prove that l and l′ are two distinct lines. Assume that it
is not true, and there is 𝛼 ≠ 0 s.t. l = 𝛼l′. Then, since r𝑇 l = 0 it also
holds that 𝛼r𝑇 l′ = 0, which implies that r𝑇𝐶𝑄 r = 0. The last equality
contradicts with the assumption that 𝐶𝑄 does not intersect l.

Since the two lines are distinct, there exists a single point q (up to
scaling) s.t. q𝑇 l = 0 and q𝑇 l′ = 0. The point q can be a finite point if
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l and l′ intersect, as well as a point at infinity if the lines are parallel.
Moreover, q ≠ r since we previously proved that r𝑇 l′ = r𝑇𝐶𝑄 r ≠ 0.

Any point p on the line l can be expressed as p = 𝜆r+ 𝜇q. The line
l intersects the conic𝐶𝑄 iff there exist 𝜇 and 𝜆 s.t. (𝜆r + 𝜇q)𝐶𝑄 (𝜆r +
𝜇q) = 0 and 𝜆2 + 𝜇2 ≠ 0. This is equivalent to requiring that

det
(
q𝑇𝐶𝑄q q𝑇𝐶𝑄 r
q𝑇𝐶𝑄 r r𝑇𝐶𝑄 r

)
≥ 0.

Since l does not intersect the conic, and since q𝑇𝐶𝑄 r = q𝑇 l′ = 0, it
holds that (q𝑇𝐶𝑄q) (r𝑇𝐶𝑄 r) < 0.
Similarly, any point on l′ can be expressed as 𝜆s + 𝜇q, for some

point s ≠ q lying on l′. Since l′ does not intersect𝐶𝑄 , it follows that

det
(
q𝑇𝐶𝑄q q𝑇𝐶𝑄 s
q𝑇𝐶𝑄 s s𝑇𝐶𝑄 s

)
< 0.

Now we notice that

det
(

q𝑇𝐶𝑄q q𝑇𝐶𝑄 (𝛽s + 𝛾r)
q𝑇𝐶𝑄 (𝛽s + 𝛾r) (𝛽s + 𝛾r)𝑇𝐶𝑄 (𝛽s + 𝛾r)

)
=

𝛽2 det
(
q𝑇𝐶𝑄q q𝑇𝐶𝑄 s
q𝑇𝐶𝑄 s s𝑇𝐶𝑄 s

)
+ 𝛾2 (q𝑇𝐶𝑄q) (r𝑇𝐶𝑄 r) < 0.

Therefore, for any 𝛽 and 𝛾 , the line that goes through q and (𝛽s+𝛾r)
does not intersect 𝐶𝑄 . Equivalently, any line that goes through q
does not intersect the conic 𝐶𝑄 , implying that there are no real
points that belong to 𝐶𝑄 . With this contradiction, we conclude our
derivation and state that either l or l′ intersect the conic 𝐶𝑄 .

D COMPUTING BOUNDING QUADRICS
In Sec. 4.2, we discuss that to construct the bounding quadrics 𝑄0
and 𝑄1, it is necessary to find extrema of 𝜆(q(𝑡)), where

𝜆(q) = −
q𝑇𝑄 𝑓 q

q𝑇𝑄𝑜q
, q(𝑡) = (1 − 𝑡)q0 + 𝑡q1,

and q0, q1 are two planes forming an edge. We assume that 𝑄𝑜 is a
rank-1 positive semidefinitematrix s.t. q(𝑡)𝑇𝑄𝑜q(𝑡) > 0, ∀𝑡 ∈ [0, 1] .
As noted before, 𝜆(q(𝑡)) is a differentiable function of 𝑡 and it

achieves its extremal values either at 𝑡 = 0, at 𝑡 = 1, or at a critical
point 𝑡∗ ∈ (0, 1) if such a point exists. Explicitly computing 𝑡∗ is
possible, but the resulting expressions are complicated and hard to
analyze. Thus, we directly evaluate 𝜆∗ = 𝜆(q(𝑡∗)).

For that, we consider the function

𝑔(𝜆, q) = q𝑇𝑄𝜆q, where 𝑄𝜆 = 𝑄 𝑓 + 𝜆𝑄𝑜 .

Given the choice of the offset quadric, for any q = q(𝑡), 𝑡 ∈ (0, 1),
the function 𝑔(𝜆, q) is a strictly monotonically increasing linear
function of 𝜆 that equals zero at 𝜆(q(𝑡)). Therefore, the zero set of
the function 𝑔(𝜆, q) for 𝑡 ∈ (0, 1) is
Λ0 =

{
𝜆 | ∃𝑡 ∈ (0, 1) s.t. 𝑔(𝜆, q(𝑡)) = 0

}
= {𝜆(q(𝑡)) | 𝑡 ∈ (0, 1)}.

This observation leads us to the conclusion that computing 𝜆∗ is
equivalent to computing an extremum (if it exists) of the set Λ0.

For a fixed 𝜆, 𝑔(𝜆, q(𝑡)) is a quadratic function of 𝑡 :

𝑔(𝜆, q(𝑡)) = 𝑡2 (q1 − q0)𝑇𝑄𝜆 (q1 − q0) + 2𝑡q𝑇0𝑄𝜆 (q1 − q0) + q𝑇0𝑄𝜆q0 .

The set Λ0 only contains 𝜆 for which this parabola has real roots
in (0, 1). A value 𝜆 is an extremum of Λ0 if and only if there is no
neighborhood 𝐸 = (𝜆 − 𝜖, 𝜆 + 𝜖) s.t. ∀𝜆′ ∈ 𝐸 the function 𝑔(𝜆′, q(𝑡))

has real roots. Considering that 𝑔(𝜆, q(𝑡)) is a continuous function,
it implies that if for some 𝜆 the parabola 𝑔(𝜆, q(𝑡)) has two real
roots, this 𝜆 cannot be an extremum of Λ0. Now we know that if 𝜆
is an extremum of Λ0 then 𝑔(𝜆, q(𝑡)) has a single root 𝑡∗ ∈ (0, 1).
The opposite also holds: assume that for some 𝜆∗, the parabola
𝑔(𝜆, q(𝑡)) has a single root 𝑡∗ ∈ (0, 1). This implies that either
𝑔(𝜆∗, q(𝑡)) ≤ 0 ∀𝑡 or 𝑔(𝜆∗, q(𝑡)) ≥ 0 ∀𝑡 . We will start from the
first case. Taking into account that 𝑔(𝜆, q(𝑡)) is a strictly increasing
function of 𝜆, we state that for any 𝜆′ < 𝜆∗ and any 𝑡 it holds that
𝑔(𝜆′, q(𝑡)) < 0. This means that 𝜆′ ∉ Λ0 and that 𝜆∗ = minΛ0.
In the second case, similar derivations can be used to show that
𝜆∗ = maxΛ0.

Similar reasoning can be used to explain that if for some 𝜆 parabola
𝑔(𝜆, q(𝑡)) has a leading coefficient equal to zero, this 𝜆 is not an
extremum. Thus, in the following, we only consider the case where
(q1 − q0)𝑇𝑄𝜆 (q1 − q0) ≠ 0.
A parabola has a single root when its discriminant is equal to

zero. In our case, it should hold that:

(q𝑇0𝑄𝜆 (q1 − q0))2 −
(
q𝑇0𝑄𝜆q0

) (
(q1 − q0)𝑇𝑄𝜆 (q1 − q0)

)
= 0 ⇔

(q𝑇0𝑄𝜆q1)2 = (q𝑇0𝑄𝜆q0) (q𝑇1𝑄𝜆q1) (13)

Eq. 13 is equivalent to

(q𝑇0𝑄 𝑓 q1)2 + 2𝜆(q𝑇0𝑄 𝑓 q1) (q𝑇0𝑄𝑜q1) + 𝜆2 (q𝑇0𝑄𝑜q1)2 =

(q𝑇0𝑄 𝑓 q0) (q𝑇1𝑄 𝑓 q1) + 𝜆2 (q𝑇0𝑄𝑜q0) (q𝑇1𝑄𝑜q1)+

𝜆((q𝑇0𝑄 𝑓 q0) (q𝑇1𝑄𝑜q1) + (q𝑇0𝑄𝑜q0) (q𝑇1𝑄 𝑓 q1)) .

(14)

Since 𝑄𝑜 is a rank-1 symmetric positive semidefinite matrix, it can
be expressed as 𝑄𝑜 = NN𝑇 for some vector N. This implies that
(q𝑇0𝑄𝑜q1)2 = (N𝑇 q0)2 (N𝑇 q1)2 = (q𝑇0𝑄𝑜q0) (q𝑇1𝑄𝑜q1). The coeffi-
cient in front of 𝜆2 in Eq. 14 vanishes, and the quadratic equation
for 𝜆 simplifies to a linear equation. Solving for 𝜆 we find that the
extremum of Λ0 equals

𝜆∗ =
(𝑞01

𝑓
)2 − 𝑞00

𝑓
𝑞11
𝑓

𝑞00
𝑓
𝑞11

0 + 𝑞00
𝑜 𝑞

11
𝑓
− 2𝑞01

𝑓
𝑞01
𝑜

,

where 𝑞𝑖 𝑗
𝑓
= q𝑇

𝑖
𝑄 𝑓 q𝑗 and 𝑞

𝑖 𝑗
𝑜 = q𝑇

𝑖
𝑄𝑜q𝑗 .

The next step is to establish conditions under which the root 𝑡∗
belongs to (0, 1). For a parabola 𝑎𝑡2 + 𝑏𝑡 + 𝑐 with a single root, this
root is attained at 𝑡∗ = − 𝑏

2𝑎 . Thus, we require that −
𝑏
2𝑎 ∈ (0, 1):

0 < −
q𝑇0𝑄𝜆∗ (q1 − q0)

(q1 − q0)𝑇𝑄𝜆∗ (q1 − q0)
< 1. (15)

We first consider the case that (q1 − q0)𝑇𝑄𝜆∗ (q1 − q0) > 0 which is
equivalent to saying that the parabola 𝑔(𝜆∗, q(𝑡)) opens upwards.
Since there is only one root, it holds that 𝑔(𝜆∗, q(𝑡)) > 0 ∀𝑡 ≠ 𝑡∗.

Our goal is to find conditions under which

0 < −q𝑇0𝑄𝜆∗ (q1 − q0) < (q1 − q0)𝑇𝑄𝜆∗ (q1 − q0) .

For the first inequality, we get that

−q𝑇0𝑄𝜆∗ (q1 − q0) > 0 ⇔ q𝑇0𝑄𝜆∗q0 > q𝑇0𝑄𝜆∗q1
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Considering that q𝑇0𝑄𝜆∗q0 = 𝑔(𝜆∗, q(0)) and that 𝑡 = 0 ≠ 𝑡∗, we
state that q𝑇0𝑄𝜆∗q0 > 0. Thus, the previous inequality holds iff

q𝑇0𝑄𝜆∗q1 < 0 or (q𝑇0𝑄𝜆∗q0)2 > (q𝑇0𝑄𝜆∗q1)2 .

Using Eq. 13, we conclude that the first inequality holds iff

q𝑇0𝑄𝜆∗q1 < 0 or q𝑇0𝑄𝜆∗q0 > q𝑇1𝑄𝜆∗q1.

For the second inequality, we use similar reasoning:

−q𝑇0𝑄𝜆∗ (q1 − q0) < (q1 − q0)𝑇𝑄𝜆∗ (q1 − q0) ⇔

q𝑇0𝑄𝜆∗q1 < q𝑇1𝑄𝜆∗q1 ⇔

q𝑇0𝑄𝜆∗q1 < 0 or (q𝑇0𝑄𝜆∗q1)2 < (q𝑇1𝑄𝜆∗q1)2 ⇔

q𝑇0𝑄𝜆∗q1 < 0 or q𝑇0𝑄𝜆∗q0 < q𝑇1𝑄𝜆∗q1

For the extremum to belong to (0, 1) it is necessary that both
inequalities hold, and therefore both conditions that we derived
above have to be satisfied, i.e.

(q𝑇0𝑄𝜆∗q1 < 0 or q𝑇0𝑄𝜆∗q0 > q𝑇1𝑄𝜆∗q1) and

(q𝑇0𝑄𝜆∗q1 < 0 or q𝑇0𝑄𝜆∗q0 < q𝑇1𝑄𝜆∗q1) .

This condition is equivalent to q𝑇0𝑄𝜆∗q1 < 0.
For the case when (q1−q0)𝑇𝑄𝜆∗ (q1−q0) < 0, similar derivations

show that Ineq. 15 holds iff q𝑇0𝑄𝜆∗q1 > 0.
Thus, we proved that 𝜆∗ is the extremum of the set Λ0 iff(

q𝑇0𝑄𝜆∗q1
) (
(q1 − q0)𝑇𝑄𝜆∗ (q1 − q0)

)
< 0.

E DISTANCE FROM A QUADRIC TO A PLANE
In the following, we prove that distance𝑑 (𝑄, q) from a (dual) quadric
𝑄 to a plane q can be approximated with

𝑑2 (𝑄, q) = 9(q𝑇𝑄q)2

4q𝑇𝑄𝐴𝑄q
, where 𝐴 = diag(0, 0, 0, 1).

We start from defining distance between two planes q0 and q1.
The distance can be meaningfully defined only for parallel planes,
i.e. only in the case when ∃𝜆 ∈ R s.t. q0 = q1 + 𝜆i, where i =

[0, 0, 0, 1]𝑇 . When q0 and q1 are parallel, the distance 𝑑 (q0, q1) is
simply the offset between the planes. Equivalently, 𝑑 (q0, q1) = |𝜆 |,
or 𝑑 (q0, q1)2 = (q0 − q1)𝑇𝐴(q0 − q1).
The distance between a quadric 𝑄 and a plane q is the distance

from q to the closest parallel plane q′ that lies on the quadric 𝑄 :

𝑑 (𝑄, q) = min
q′=q+𝜆i
q′𝑇𝑄q′=0

𝑑 (q′, q) .

Solving for an analytical expression for 𝑑 (𝑄, q) is possible, but
the resulting formula is too complex to work with. Instead, we
follow the approach proposed by Taubin [1991], and approximate
the zero set of implicit function 𝑓 (q′) = q′𝑇𝑄q′ with zero set of 𝑓 –
first-order approximation of 𝑓 at q.

Using Taylor series expansion, we get that 𝑓 (q′) = 𝑓 (q)+2q𝑇𝑄q′.
The approximate distance from 𝑄 to q is defined as

𝑑 (𝑄, q) = min
q′=q+𝜆i
𝑓 (q′ )=0

𝑑 (q′, q) .

To get a closed-form expression for𝑑 (𝑄, q), we find q′ parallel to q
s.t. 𝑓 (q′) = 0. This is equivalent to finding 𝜆∗ for which 𝑓 (q+𝜆∗i) =
0. Such 𝜆∗ is unique and equals to 𝜆∗ = (3q∗𝑄q)/(2q𝑇𝑄i).

Finally, we derive

𝑑2 (𝑄, q) = 𝑑 (q, q + 𝜆∗i) = (𝜆∗)2i𝑇𝐴i =

=
9(q𝑇𝑄q)2

4q𝑇𝑄i(q𝑇𝑄i)𝑇
=

9(q𝑇𝑄q)2

4q𝑇𝑄𝐴𝑄q
.

F V-SPHERE TEST BUG
The rejection test proposed by Li [2019] relies on Hough transforms.
For a plane 𝑃 with unit normal n and offset 𝑑 , the Hough transform
is a vector 𝐻 (𝑃) = 𝑑n ∈ R3. For a point 𝑉 , a hollow sphere with
center V

2 and radius ∥V∥
2 is called the V-sphere. Consider an edge

𝑒 formed by planes 𝑃0 and 𝑃1. Assuming that 𝑒 is not a silhouette
when viewed from the origin 𝑂 , the edge 𝑒 is a silhouette for a
point V if and only if the corresponding V-sphere intersects the line
segment connecting 𝐻 (𝑃0) and 𝐻 (𝑃1) [Olson and Zhang 2006].

Li [2019] and Olson and Zhang [2006] use this property to detect
mesh patches that do not contain silhouettes. For a set of edges E
formed by the set of planes P, the bounding box B encloses Hough
transforms of these planes i.e. 𝐻 (𝑃) ∈ B, ∀𝑃 ∈ P. If the V-sphere
does not intersect the solid box B, it is guaranteed that there are
no silhouette edges in the set E. In the original version of redner,
however, the intersection is performed for a solid V-sphere and a
solid box B. Such rejection test rejects fewer nodes than possible.
In Fig. 7, we compare the number of false accepts for the original
version of redner and the version with fixed rejection test. We show
that in some cases, using the correct rejection test can noticeably
reduce the number of false accepts. We use edge sampling with the
corrected rejection test for all of our comparisons.

G THE SMALLEST BOUNDING SPHERE
In this section, we prove that optimization problem (7) has a solution
if and only if the smallest bounding sphere of the set N has radius
𝑟min < 1. Moreover, we show that in this case d can be computed
as cmin/∥cmin∥, where cmin is the center of the smallest bounding
sphere. In the following, we extensively use the property that the
set N lies on the unit sphere S2 centered at the origin.
To prove the first part of the claim, assume that problem (7) is

feasible and has a solution d s.t. d𝑇 d = 1 and d𝑇 n ≥ cos𝛼 > 0,
∀n ∈ N . We can then construct a sphere with center d cos𝛼 and
radius sin𝛼 < 1 that is guaranteed to bound the set N . Since the
radius of this bounding sphere is less than 1, the radius of the
smallest bounding sphere will be less than 1 as well. Now we prove
the opposite. Assume that the smallest bounding sphere S2

min with
radius less than 1 has its center at c. This sphere contains the whole
setN . The intersection of the volume bounded by S2

min with S
2 is a

spherical cap centered around c. Since radius of S2
min is strictly less

than 1, the spherical cup is a strict subset of S2 and the circle in the
intersection of S2 and S2

min has radius 𝑟cap < 1. Thus, problem (7)

has a feasible point d = c/∥c∥ since d𝑇 n ≥
√︃

1 − 𝑟2
cap > 0, ∀n ∈ N .

This concludes the first part of the proof.
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To prove the second half of the claim, let the minimal bound-
ing sphere for the set N have a radius 𝑟min and cmin as its center.
We prove that d = cmin/∥cmin∥ is a solution of problem (7). Let
cos𝛼 = minn∈N d𝑇 n. Assume that there is another feasible vector
d′ s.t. cos𝛼 ′ = minn∈N d′𝑇 n > cos𝛼 . We define c′ = ∥cmin∥d′ and

compute the distance from this point to all points n in the set N :

∥c′ − n∥2 = ∥d′ × (c′ − n)∥2 + (d′𝑇 (c′ − n))2 =

∥d′ × n∥2 + (∥cmin∥ − d′𝑇 n)2 = 1 − (d′𝑇 n)2 + (∥cmin∥ − d′𝑇 n)2 =

1 + ∥cmin∥2 − 2∥cmin∥d′𝑇 n < 1 + ∥cmin∥2 − 2∥cmin∥ cos𝛼 ′ <

1 + ∥cmin∥2 − 2∥cmin∥ cos𝛼 = 1 + ∥cmin∥2 − 2∥cmin∥ min
n∈N

d𝑇 n =

max
n∈N

(1 + ∥cmin∥2 − 2∥cmin∥d𝑇 n) = max
n∈N

∥cmin − n∥2 = 𝑟2
min

Thus, maxn∈N ∥c′ − n∥2 < 𝑟2
min, implying that there exists a

smaller bounding sphere. This contradiction concludes the proof.
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